Browsing by Author "Rakowski, Mark"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Subdivision Analysis of Topological $Z_{p}$ Lattice Gauge Theory(SISSA, 1993-06-25) Birmingham, Danny; Rakowski, Mark; Physics; Elementary Particle TheoryWe analyze the subdivision properties of certain lattice gauge theories for the discrete abelian groups $Z_{p}$, in four dimensions. In these particular models we show that the Boltzmann weights are invariant under all $(k,l)$ subdivision moves, when the coupling scale is a $p$th root of unity. For the case of manifolds with boundary, we demonstrate analytically that Alexander type $2$ and $3$ subdivision of a bounding simplex is equivalent to the insertion of an operator which equals a delta function on trivial bounding holonomies. The four dimensional model then gives rise to an effective gauge invariant three dimensional model on its boundary, and we compute the combinatorially invariant value of the partition function for the case of $S^{3}$ and $S^{2}\times S^{1}$.