Some classes of inverse spectral problems for quantum graphs

dc.contributor.areaMathematicsen_US
dc.contributor.authorOlivieri, Marco
dc.contributor.authorFinco, D.
dc.date.accessioned2016-09-06T08:49:55Z
dc.date.available2016-09-06T08:49:55Z
dc.date.issued30-08-2016
dc.description.abstractInverse spectral problems for quantum graphs are analyzed. Under hypothesis of rational independence of lengths of edges it is possible, thanks to trace formulas, to reconstruct every information of compact and not compact graphs from the knowledge, respectively, of the spectrum of Laplacian and of the scattering phase. In the case of Sturm-Liouville operators defined on the graphs and more in general for differential operators, unknown potentials can be recovered from the knowledge of the spectrum of operators.en_US
dc.identifier.urihttps://openscience.sissa.it/handle/1963/35208
dc.language.isoenen_US
dc.miur.area1en_US
dc.publisherSISSAen_US
dc.subject.miurMAT/07en_US
dc.titleSome classes of inverse spectral problems for quantum graphsen_US
dc.typePreprinten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
preprint-SISSA-49-2016-MATE.pdf
Size:
135.97 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.3 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections