A note on the homogenization of incommensurate thin films
dc.contributor.area | mathematics | en_US |
dc.contributor.author | Anello, Irene | |
dc.contributor.author | Braides, Andrea | |
dc.contributor.author | Caragiulo, Fabrizio | |
dc.date.accessioned | 2022-12-22T08:22:08Z | |
dc.date.available | 2022-12-22T08:22:08Z | |
dc.date.issued | 2022-12-21 | |
dc.description | Preprint SISSA 22/2022/MATE | en_US |
dc.description.abstract | Dimension-reduction homogenization results for thin films have been obtained under hy potheses of periodicity or almost-periodicity of the energies in the directions of the mid-plane of the film. In this note we consider thin films, obtained as sections of a periodic medium with a mid-plane that may be incommensurate; that is, not containing periods other than oggi si 0. A geometric almost-periodicity argument similar to the cut-and-project argument used for quasicrystals allows to prove a general homogenization result. | en_US |
dc.identifier.uri | https://openscience.sissa.it/handle/1963/35452 | |
dc.language.iso | en | en_US |
dc.title | A note on the homogenization of incommensurate thin films | en_US |
dc.type | Preprint | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Preprint222022.pdf
- Size:
- 368.81 KB
- Format:
- Adobe Portable Document Format
- Description: