A note on the homogenization of incommensurate thin films

dc.contributor.areamathematicsen_US
dc.contributor.authorAnello, Irene
dc.contributor.authorBraides, Andrea
dc.contributor.authorCaragiulo, Fabrizio
dc.date.accessioned2022-12-22T08:22:08Z
dc.date.available2022-12-22T08:22:08Z
dc.date.issued2022-12-21
dc.descriptionPreprint SISSA 22/2022/MATEen_US
dc.description.abstractDimension-reduction homogenization results for thin films have been obtained under hy potheses of periodicity or almost-periodicity of the energies in the directions of the mid-plane of the film. In this note we consider thin films, obtained as sections of a periodic medium with a mid-plane that may be incommensurate; that is, not containing periods other than oggi si 0. A geometric almost-periodicity argument similar to the cut-and-project argument used for quasicrystals allows to prove a general homogenization result.en_US
dc.identifier.urihttps://openscience.sissa.it/handle/1963/35452
dc.language.isoenen_US
dc.titleA note on the homogenization of incommensurate thin filmsen_US
dc.typePreprinten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Preprint222022.pdf
Size:
368.81 KB
Format:
Adobe Portable Document Format
Description:
Collections