Stochastic homogenisation of free-discontinuity problems
dc.contributor.area | Mathematics | en_US |
dc.contributor.author | Cagnetti, Filippo | |
dc.contributor.author | Dal Maso, Gianni | |
dc.contributor.author | Scardia, Lucia | |
dc.contributor.author | Zeppieri, Caterina Ida | |
dc.date.accessioned | 2018-03-19T09:16:27Z | |
dc.date.available | 2018-03-19T09:16:27Z | |
dc.date.issued | 2018-03 | |
dc.description.abstract | In this paper we study the stochastic homogenisation of free-discontinuity functionals. Assuming stationarity for the random volume and surface integrands, we prove the existence of a homogenised random free-discontinuity functional, which is deterministic in the ergodic case. Moreover, by establishing a connection between the deterministic convergence of the functionals at any fixed realisation and the pointwise Subadditive Ergodic Theorem by Akcoglou and Krengel, we characterise the limit volume and surface integrands in terms of asymptotic cell formulas. | en_US |
dc.identifier.uri | https://openscience.sissa.it/handle/1963/35309 | |
dc.language.iso | en | en_US |
dc.miur.area | 1 | en_US |
dc.relation.firstpage | 1 | en_US |
dc.relation.ispartofseries | SISSA;05/2018/MATE | |
dc.relation.lastpage | 23 | en_US |
dc.subject | Subadditive Ergodic Theorem | en_US |
dc.subject | stochastic homogenisation | en_US |
dc.subject | free-discontinuity problems | en_US |
dc.subject | Gamma-convergence. | en_US |
dc.subject.miur | MAT/05 | en_US |
dc.title | Stochastic homogenisation of free-discontinuity problems | en_US |
dc.type | Preprint | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Cag-DM-Sca-Zep-Stochastic.pdf
- Size:
- 417.21 KB
- Format:
- Adobe Portable Document Format
- Description:
- Preprint
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: