Time-dependent systems of generalized Young measures

dc.contributor.areaMathematicsen_US
dc.contributor.authorDal Maso, Giannien_US
dc.contributor.authorDeSimone, Antonioen_US
dc.contributor.authorMora, Maria Giovannaen_US
dc.contributor.authorMorini, Massimilianoen_US
dc.contributor.departmentFunctional Analysis and Applicationsen_US
dc.date.accessioned2005en_US
dc.date.accessioned2011-09-07T20:28:30Z
dc.date.available2005en_US
dc.date.available2011-09-07T20:28:30Z
dc.date.issued2005en_US
dc.description.abstractIn this paper some new tools for the study of evolution problems in the framework of Young measures are introduced. A suitable notion of time-dependent system of generalized Young measures is defined, which allows to extend the classical notions of total variation and absolute continuity with respect to time, as well as the notion of time derivative. The main results are a Helly type theorem for sequences of systems of generalized Young measures and a theorem about the existence of the time derivative for systems with bounded variation with respect to time.en_US
dc.format.extent339547 bytesen_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationNetw. Heterog. Media 2 (2007) 1-36en_US
dc.identifier.urihttps://openscience.sissa.it/handle/1963/1795en_US
dc.language.isoen_USen_US
dc.relation.ispartofseriesSISSA;98/2005/Men_US
dc.relation.ispartofseriesarXiv.org;math.FA/0512387en_US
dc.titleTime-dependent systems of generalized Young measuresen_US
dc.typePreprinten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
math.FA0512387.pdf
Size:
330.8 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.74 KB
Format:
Plain Text
Description:
Collections