Grothendieck Duality for Projective Deligne-Mumford Stacks

dc.contributor.areaMathematicsen_US
dc.contributor.authorNironi, Fabioen_US
dc.contributor.departmentMathematical Physicsen_US
dc.date.accessioned2008-11-17T12:00:52Zen_US
dc.date.accessioned2011-09-07T20:22:25Z
dc.date.available2008-11-17T12:00:52Zen_US
dc.date.available2011-09-07T20:22:25Z
dc.date.issued2008-11-17T12:00:52Zen_US
dc.description.abstractWe develop Grothendieck duality for projective Deligne-Mumford stacks, in particular we prove the existence of a dualizing complex for a morphism from a projective stack to a scheme and for a proper representable morphism of algebraic stacks. In the first case we explicitly compute the dualizing complex and prove that Serre duality holds for smooth projective stacks in its usual form. We prove also that a projective stack has dualizing sheaf if and only if it is Cohen-Macaulay, it has a dualizing sheaf that is an invertible sheaf if and only if it is Gorenstein and for local complete intersections we explicitly compute the invertible sheaf. As an application of this general machinery we compute the dualizing sheaf of a nodal projective curve.en_US
dc.format.extent329192 bytesen_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.urihttps://openscience.sissa.it/handle/1963/3288en_US
dc.language.isoen_USen_US
dc.relation.ispartofseriesSISSA;70/2008/FMen_US
dc.relation.ispartofseriesarXiv.org;0811.1955en_US
dc.titleGrothendieck Duality for Projective Deligne-Mumford Stacksen_US
dc.typePreprinten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0811.1955v1.pdf
Size:
321.48 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.74 KB
Format:
Plain Text
Description:

Collections