Ambrosio-Tortorelli approximation of cohesive fracture models in linearized elasticity
dc.contributor.area | Mathematics | en_US |
dc.contributor.author | Focardi, Matteo | |
dc.contributor.author | Iurlano, Flaviana | |
dc.date.accessioned | 2013-05-13T12:15:50Z | |
dc.date.available | 2013-05-13T12:15:50Z | |
dc.date.issued | 2013-05 | |
dc.description.abstract | We provide an approximation result in the sense of $\Gamma$-convergence for cohesive fracture energies of the form \[ \int_\Omega \mathscr{Q}_1(e(u))\,dx+a\,\mathcal{H}^{n-1}(J_u)+b\,\int_{J_u}\mathscr{Q}_0^{1/2}([u]\odot\nu_u)\,d\mathcal{H}^{n-1}, \] where $\Omega\subset{\mathbb R}^n$ is a bounded open set with Lipschitz boundary, $\mathscr{Q}_0$ and $\mathscr{Q}_1$ are coercive quadratic forms on ${\mathbb M}^{n\times n}_{sym}$, $a,\,b$ are positive constants, and $u$ runs in the space of fields $SBD^2(\Omega)$ , i.e., it's a special field with bounded deformation such that its symmetric gradient $e(u)$ is square integrable, and its jump set $J_u$ has finite $(n-1)$-Hausdorff measure in ${\mathbb R}^n$. The approximation is performed by means of Ambrosio-Tortorelli type elliptic regularizations, the prototype example being \[ \int_\Omega\Big(v|e(u)|^2+\frac{(1-v)^2}{\varepsilon}+{\gamma\,\varepsilon}|\nabla v|^2\Big)\,dx, \] where $(u,v)\in H^1(\Omega,{\mathbb R}^n){\times} H^1(\Omega)$, $\varepsilon\leq v\leq 1$ and $\gamma>0$. | en_US |
dc.identifier.uri | https://openscience.sissa.it/handle/1963/6615 | |
dc.language.iso | en | en_US |
dc.miur.area | 1 | en_US |
dc.publisher | SISSA | en_US |
dc.subject.keyword | Functions of bounded deformation | en_US |
dc.subject.keyword | free discontinuity problems | en_US |
dc.subject.keyword | cohesive fracture | en_US |
dc.subject.miur | MAT/05 ANALISI MATEMATICA | |
dc.title | Ambrosio-Tortorelli approximation of cohesive fracture models in linearized elasticity | en_US |
dc.type | Preprint | en_US |