Discrete approximation of nonlocal-gradient energies

dc.contributor.areamathematicsen_US
dc.contributor.authorBraides, Andrea
dc.contributor.authorCausin, Andrea
dc.contributor.authorSolci, Margherita
dc.date.accessioned2023-06-22T09:47:13Z
dc.date.available2023-06-22T09:47:13Z
dc.date.issued2023-01-22
dc.descriptionSISSA 09/2023/MATEen_US
dc.description.abstractWe study a discrete approximation of functionals depending on nonlocal gradients. The discretized functionals are proved to be coercive in classical Sobolev spaces. The key ingredient in the proof is a formulation in terms of circulant Toeplitz matrices.en_US
dc.identifier.urihttp://hdl.handle.net/1963/35461
dc.language.isoenen_US
dc.subjectnonlocal gradientsen_US
dc.subjectperidynamicsen_US
dc.subjectfractional Sobolev spacesen_US
dc.subjectdiscrete approximationsen_US
dc.subjectdiscrete-to-continuum convergenceen_US
dc.titleDiscrete approximation of nonlocal-gradient energiesen_US
dc.typePreprinten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
NonlocalDiscrete_SISSA.pdf
Size:
260.47 KB
Format:
Adobe Portable Document Format
Description:
Collections