Discrete approximation of nonlocal-gradient energies
dc.contributor.area | mathematics | en_US |
dc.contributor.author | Braides, Andrea | |
dc.contributor.author | Causin, Andrea | |
dc.contributor.author | Solci, Margherita | |
dc.date.accessioned | 2023-06-22T09:47:13Z | |
dc.date.available | 2023-06-22T09:47:13Z | |
dc.date.issued | 2023-01-22 | |
dc.description | SISSA 09/2023/MATE | en_US |
dc.description.abstract | We study a discrete approximation of functionals depending on nonlocal gradients. The discretized functionals are proved to be coercive in classical Sobolev spaces. The key ingredient in the proof is a formulation in terms of circulant Toeplitz matrices. | en_US |
dc.identifier.uri | http://hdl.handle.net/1963/35461 | |
dc.language.iso | en | en_US |
dc.subject | nonlocal gradients | en_US |
dc.subject | peridynamics | en_US |
dc.subject | fractional Sobolev spaces | en_US |
dc.subject | discrete approximations | en_US |
dc.subject | discrete-to-continuum convergence | en_US |
dc.title | Discrete approximation of nonlocal-gradient energies | en_US |
dc.type | Preprint | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- NonlocalDiscrete_SISSA.pdf
- Size:
- 260.47 KB
- Format:
- Adobe Portable Document Format
- Description: