Compactness for a class of integral functionals with interacting local and non-local terms

dc.contributor.areamathematicsen_US
dc.contributor.authorBraides, Andrea
dc.contributor.authorDal Maso, Gianni
dc.date.accessioned2022-12-29T10:12:35Z
dc.date.available2022-12-29T10:12:35Z
dc.date.issued2022-12-20
dc.descriptionPreprint SISSA 21/2022/MATEen_US
dc.description.abstractWe prove a compactness result with respect to 􀀀-convergence for a class of integral functionals which are expressed as a sum of a local and a non-local term. The main feature is that, under our hypotheses, the local part of the 􀀀-limit depends on the interaction between the local and non-local terms of the converging subsequence. The result is applied to concentration and homogenization problems.en_US
dc.identifier.urihttps://openscience.sissa.it/handle/1963/35454
dc.language.isoenen_US
dc.titleCompactness for a class of integral functionals with interacting local and non-local termsen_US
dc.typePreprinten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bra-DM-20-12-22-sissa.pdf
Size:
319.83 KB
Format:
Adobe Portable Document Format
Description:
Collections