Deformations of holomorphic pairs and 2d-4d wall-crossing

dc.contributor.authorFantini, Veronica
dc.date.accessioned2020-03-09T09:59:31Z
dc.date.available2020-03-09T09:59:31Z
dc.date.issued2019
dc.description.abstractWe show how wall-crossing formulas in coupled 2d-4d systems, introduced by Gaiotto, Moore and Neitzke, can be interpreted geometrically in terms of the deformation theory of holomorphic pairs, given by a complex manifold together with a holomorphic vector bundle. The main part of the paper studies the relation between scattering diagrams and deformations of holomorphic pairs, building on recent work by Chan, Conan Leung and Ma.en_US
dc.identifier.urihttps://openscience.sissa.it/handle/1963/35344
dc.language.isoenen_US
dc.relation.ispartofseriesSISSA;02/2020/MATE
dc.subjectAlgebraic Geometryen_US
dc.titleDeformations of holomorphic pairs and 2d-4d wall-crossingen_US
dc.typePreprinten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Fantin.pdf
Size:
450.57 KB
Format:
Adobe Portable Document Format
Description:
Collections