Normality of the maximum principle for non convex constrained Bolza problems

dc.contributor.areaMathematicsen_US
dc.contributor.authorBettiol, Piernicolaen_US
dc.contributor.authorFrankowska, Heleneen_US
dc.contributor.departmentFunctional Analysis and Applicationsen_US
dc.date.accessioned2007-02-02T09:06:13Zen_US
dc.date.accessioned2011-09-07T20:27:03Z
dc.date.available2007-02-02T09:06:13Zen_US
dc.date.available2011-09-07T20:27:03Z
dc.date.issued2007-02-02T09:06:13Zen_US
dc.description.abstractIn this paper we consider a Bolza optimal control problem under state constraints and provide a sufficient condition for any Lipschitz trajectory satisfying the maximum principle to be a normal extremal. In the difference with the previous works we allow the initial condition to be fixed and consider less regular state constraints. To prove normality we use J.Yorke type linearization of control systems and show the existence of solution to a linearized control system satisfying new state constraints defined, in turn, by linearization of the original set of constraints along the extremal trajectory.en_US
dc.format.extent229540 bytesen_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationJ. Differential Equations 243 (2007) 256-269en_US
dc.identifier.urihttps://openscience.sissa.it/handle/1963/1910en_US
dc.language.isoen_USen_US
dc.relation.ispartofseriesSISSA;84/2006/Men_US
dc.relation.uri10.1016/j.jde.2007.05.005en_US
dc.titleNormality of the maximum principle for non convex constrained Bolza problemsen_US
dc.typePreprinten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
BettiolFrankowskaPreprintSISSA.pdf
Size:
224.16 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.74 KB
Format:
Plain Text
Description:
Collections