Ghost story. I. Wedge states in the oscillator formalism

dc.contributor.areaPhysicsen_US
dc.contributor.authorBonora, Lorianoen_US
dc.contributor.authorMaccaferri, Carloen_US
dc.contributor.authorScherer Santos, Ricardo Joseen_US
dc.contributor.authorTolla, Driba Demissieen_US
dc.contributor.departmentElementary Particle Theoryen_US
dc.date.accessioned2007-06-11T09:16:56Zen_US
dc.date.accessioned2011-09-07T20:26:28Z
dc.date.available2007-06-11T09:16:56Zen_US
dc.date.available2011-09-07T20:26:28Z
dc.date.issued2007-06-11T09:16:56Zen_US
dc.description.abstractThis paper is primarily devoted to the ghost wedge states in string field theory formulated with the oscillator formalism. Our aim is to prove, using such formalism, that the wedge states can be expressed as |n> = exp[{2-n}/2 ({\cal L}_0+{\cal L}_0^\daggert)]|0>, separately in the matter and ghost sector. This relation is crucial for instance in the proof of Schnabl's solution. We start from the exponentials in the rhs and wish to prove that they take precisely the form of wedge states. As a guideline we first re-demonstrate this relation for the matter part. Then we turn to the ghosts. On the way we face the problem of `diagonalizing' infinite rectangular matrices. We manage to give a meaning to such an operation and to prove that the eigenvalues we obtain satisfy the recursion relations of the wedge states.en_US
dc.format.extent429579 bytesen_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationJHEP 09 (2007) 061en_US
dc.identifier.urihttps://openscience.sissa.it/handle/1963/1981en_US
dc.language.isoen_USen_US
dc.relation.ispartofseriesSISSA;34/2007/EPen_US
dc.relation.ispartofseriesarXiv.org;0706.1025en_US
dc.relation.uri10.1088/1126-6708/2007/09/061en_US
dc.titleGhost story. I. Wedge states in the oscillator formalismen_US
dc.typePreprinten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
hep-th0706.1025v1.pdf
Size:
419.51 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.74 KB
Format:
Plain Text
Description:
Collections