Differential geometry of moduli spaces and its applications to soliton equations and to topological conformal field theory

dc.contributor.areaMathematicsen_US
dc.contributor.authorDubrovin, Boris
dc.date.accessioned2013-02-13T14:11:31Z
dc.date.available2013-02-13T14:11:31Z
dc.date.issued1991-11
dc.description.abstractWe construct flat Riemannian metrics on moduli spaces of algebraic curves with marked meromorphic function. This gives a new class of exact algebraic-geometry solutions to certain non-linear equations in terms of functions on the moduli spaces. We show that the Riemannian metrics on the moduli spaces coincide with two-point correlators in topological conformal field theory and calculate the partition function for A_n model for arbitrary genus. A universal method for constructing complete families of conservation laws for Whitham-type hierarchies of PDEs is also proposed.en_US
dc.identifier.citationPreprint n.117, Scuola Normale Superiore, Pisa, November 1991, 31 pp. Published in: Surveys in Differential Geometry , Vol. IV (1999), p. 213 - 238.en_US
dc.identifier.urihttps://openscience.sissa.it/handle/1963/6475
dc.language.isoenen_US
dc.miur.area1en_US
dc.publisherScuola Normale Superiore di Pisaen_US
dc.subject.miurMAT/03 GEOMETRIA
dc.titleDifferential geometry of moduli spaces and its applications to soliton equations and to topological conformal field theoryen_US
dc.typePreprinten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
dubrovin_1991_pisa.pdf
Size:
50.84 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections