Numerical Solution of the Small Dispersion Limit of the Camassa-Holm and Whitham Equations and Multiscale Expansions

dc.contributor.areaMathematicsen_US
dc.contributor.authorAbenda, Simonettaen_US
dc.contributor.authorGrava, Tamaraen_US
dc.contributor.authorKlein, Christianen_US
dc.contributor.departmentMathematical Physicsen_US
dc.date.accessioned2010-02-05T10:20:57Zen_US
dc.date.accessioned2011-09-07T20:19:52Z
dc.date.available2010-02-05T10:20:57Zen_US
dc.date.available2011-09-07T20:19:52Z
dc.date.issued2010-02-05T10:20:57Zen_US
dc.description.abstractThe small dispersion limit of solutions to the Camassa-Holm (CH) equation is characterized by the appearance of a zone of rapid modulated oscillations. An asymptotic description of these oscillations is given, for short times, by the one-phase solution to the CH equation, where the branch points of the corresponding elliptic curve depend on the physical coordinates via the Whitham equations. We present a conjecture for the phase of the asymptotic solution. A numerical study of this limit for smooth hump-like initial data provides strong evidence for the validity of this conjecture....en_US
dc.format.extent613403 bytesen_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.urihttps://openscience.sissa.it/handle/1963/3840en_US
dc.language.isoen_USen_US
dc.relation.ispartofseriesSISSA;10/2010/FMen_US
dc.relation.ispartofseriesarXiv.org;0909.1020en_US
dc.titleNumerical Solution of the Small Dispersion Limit of the Camassa-Holm and Whitham Equations and Multiscale Expansionsen_US
dc.typePreprinten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0909.1020v1.pdf
Size:
599.03 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.74 KB
Format:
Plain Text
Description:
Collections