Truncation and convergence issues for bounded linear inverse problems in Hilbert space

dc.contributor.areaMathematicsen_US
dc.contributor.authorCaruso, Noe
dc.contributor.authorMichelangeli, Alessandro
dc.contributor.authorNovati, Paolo
dc.date.accessioned2018-11-20T13:02:23Z
dc.date.available2018-11-20T13:02:23Z
dc.date.issued2018
dc.description.abstractWe present a general discussion of the main features and issues that (bounded) inverse linear problems in Hilbert space exhibit when the dimension of the space is infinite. This includes the set-up of a consistent notation for inverse problems that are genuinely infinite-dimensional, the analysis of the finite-dimensional truncations, a discussion of the mechanisms why the error or the residual generically fail to vanish in norm, and the identification of practically plausible sufficient conditions for such indicators to be small in some weaker sense. The presentation is based on theoretical results together with a series of model examples and numerical tests.en_US
dc.identifier.urihttps://openscience.sissa.it/handle/1963/35326
dc.language.isoenen_US
dc.miur.area1en_US
dc.publisherSISSAen_US
dc.relation.firstpage1en_US
dc.relation.ispartofseriesSISSA;50/2018/MATE
dc.relation.lastpage25en_US
dc.subjectinverse linear problemsen_US
dc.subjectin nite-dimensional Hilbert spaceen_US
dc.subjectill-posed problemsen_US
dc.subjectorthonormal basis discretisationen_US
dc.subjectbounded linear operatorsen_US
dc.subjectKrylov subspacesen_US
dc.subjectKrylov solutionen_US
dc.subjectGMRESen_US
dc.subjectconjugate gradienten_US
dc.subjectLSQRen_US
dc.titleTruncation and convergence issues for bounded linear inverse problems in Hilbert spaceen_US
dc.typePreprinten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
infinite_dim_truncation_sissapreprint.pdf
Size:
1.27 MB
Format:
Adobe Portable Document Format
Description:
Preprint
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections