Instanton counting on Hirzebruch surfaces

dc.contributor.areaMathematicsen_US
dc.contributor.authorBruzzo, Ugoen_US
dc.contributor.authorPoghossian, Rubiken_US
dc.contributor.authorTanzini, Alessandroen_US
dc.contributor.departmentMathematical Physicsen_US
dc.date.accessioned2008-09-05T18:06:43Zen_US
dc.date.accessioned2011-09-07T20:25:00Z
dc.date.available2008-09-05T18:06:43Zen_US
dc.date.available2011-09-07T20:25:00Z
dc.date.issued2008-09-05T18:06:43Zen_US
dc.description.abstractWe perform a study of the moduli space of framed torsion free sheaves on Hirzebruch surfaces by using localization techniques. After discussing general properties of this moduli space, we classify its fixed points under the appropriate toric action and compute its Poincare' polynomial. From the physical viewpoint, our results provide the partition function of N=4 Vafa-Witten theory on Hirzebruch surfaces, which is relevant in black hole entropy counting problems according to a conjecture due to Ooguri, Strominger and Vafa.en_US
dc.format.extent212427 bytesen_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.urihttps://openscience.sissa.it/handle/1963/2852en_US
dc.language.isoen_USen_US
dc.relation.ispartofseriesSISSA;55/2008/FMen_US
dc.relation.ispartofseriesarXiv.org;0809.0155en_US
dc.titleInstanton counting on Hirzebruch surfacesen_US
dc.typePreprinten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0809.0155v1.pdf
Size:
207.45 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.74 KB
Format:
Plain Text
Description:

Collections