Gromov-Witten theory of tame Deligne-Mumford stacks in mixed characteristic
dc.contributor.area | Mathematics | en_US |
dc.contributor.author | Poma, Flavia | |
dc.contributor.department | Mathematical Physics | en_US |
dc.date.accessioned | 2012-10-22T10:27:59Z | |
dc.date.available | 2012-10-22T10:27:59Z | |
dc.date.issued | 2012-10-08 | |
dc.description | 42 pages, 6 sections, 2 appendices. Preliminary version, comments welcome. arXiv admin note: substantial text overlap with arXiv:1110.6395 | en_US |
dc.description.abstract | We define Gromov-Witten classes and invariants of smooth proper tame Deligne-Mumford stacks of finite presentation over a Dedekind domain. We prove that they are deformation invariants and verify the fundamental axioms. For a smooth proper tame Deligne-Mumford stack over a Dedekind domain, we prove that the invariants of fibers in different characteristics are the same. We show that genus zero Gromov-Witten invariants define a potential which satisfies the WDVV equation and we deduce from this a reconstruction theorem for genus zero Gromov-Witten invariants in arbitrary characteristic. | en_US |
dc.identifier.uri | https://openscience.sissa.it/handle/1963/6279 | |
dc.language.iso | en | en_US |
dc.miur.area | 1 | en_US |
dc.publisher | SISSA | en_US |
dc.relation.ispartofseries | arXiv:1210.2269v1; | |
dc.subject.keyword | Gromov-Witten invariants | en_US |
dc.subject.keyword | virtual class | en_US |
dc.subject.keyword | intersection theory | en_US |
dc.subject.keyword | algebraic stack | en_US |
dc.subject.keyword | quantum product | en_US |
dc.subject.miur | MAT/03 GEOMETRIA | |
dc.title | Gromov-Witten theory of tame Deligne-Mumford stacks in mixed characteristic | en_US |
dc.type | Preprint | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1210.2269v1.pdf
- Size:
- 506.45 KB
- Format:
- Adobe Portable Document Format
- Description:
- File downloaded from arXiv.org
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.62 KB
- Format:
- Item-specific license agreed upon to submission
- Description: