Gromov-Witten theory of tame Deligne-Mumford stacks in mixed characteristic

dc.contributor.areaMathematicsen_US
dc.contributor.authorPoma, Flavia
dc.contributor.departmentMathematical Physicsen_US
dc.date.accessioned2012-10-22T10:27:59Z
dc.date.available2012-10-22T10:27:59Z
dc.date.issued2012-10-08
dc.description42 pages, 6 sections, 2 appendices. Preliminary version, comments welcome. arXiv admin note: substantial text overlap with arXiv:1110.6395en_US
dc.description.abstractWe define Gromov-Witten classes and invariants of smooth proper tame Deligne-Mumford stacks of finite presentation over a Dedekind domain. We prove that they are deformation invariants and verify the fundamental axioms. For a smooth proper tame Deligne-Mumford stack over a Dedekind domain, we prove that the invariants of fibers in different characteristics are the same. We show that genus zero Gromov-Witten invariants define a potential which satisfies the WDVV equation and we deduce from this a reconstruction theorem for genus zero Gromov-Witten invariants in arbitrary characteristic.en_US
dc.identifier.urihttps://openscience.sissa.it/handle/1963/6279
dc.language.isoenen_US
dc.miur.area1en_US
dc.publisherSISSAen_US
dc.relation.ispartofseriesarXiv:1210.2269v1;
dc.subject.keywordGromov-Witten invariantsen_US
dc.subject.keywordvirtual classen_US
dc.subject.keywordintersection theoryen_US
dc.subject.keywordalgebraic stacken_US
dc.subject.keywordquantum producten_US
dc.subject.miurMAT/03 GEOMETRIA
dc.titleGromov-Witten theory of tame Deligne-Mumford stacks in mixed characteristicen_US
dc.typePreprinten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1210.2269v1.pdf
Size:
506.45 KB
Format:
Adobe Portable Document Format
Description:
File downloaded from arXiv.org
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections