A Quasistatic evolution model for perfectly plastic plates derived by Gamma-convergence

dc.contributor.areaMathematicsen_US
dc.contributor.authorDavoli, Elisa
dc.contributor.authorMora, Maria Giovanna
dc.contributor.departmentFunctional Analysis and Applicationsen_US
dc.date.accessioned2012-04-04T08:12:31Z
dc.date.available2012-04-04T08:12:31Z
dc.date.issued2012-04
dc.description.abstractThe subject of this paper is the rigorous derivation of a quasistatic evolution model for a linearly elastic - perfectly plastic thin plate. As the thickness of the plate tends to zero, we prove via Gamma-convergence techniques that solutions to the three-dimensional quasistatic evolution problem of Prandtl-Reuss elastoplasticity converge to a quasistatic evolution of a suitable reduced model. In this limiting model the admissible displacements are of Kirchhoff-Love type and the stretching and bending components of the stress are coupled through a plastic flow rule. Some equivalent formulations of the limiting problem in rate form are derived, together with some two-dimensional characterizations for suitable choices of the data.en_US
dc.identifier.urihttps://openscience.sissa.it/handle/1963/5673
dc.language.isoenen_US
dc.miur.area-1en_US
dc.publisherSISSAen_US
dc.relation.ispartofseriesSISSA;07/2012/M
dc.subject.keywordGamma-convergenceen_US
dc.subject.keywordquasistatic evolutionen_US
dc.subject.keywordrate-independent processesen_US
dc.subject.keywordPrandtl-Reuss plasticityen_US
dc.subject.keywordperfect plasticityen_US
dc.subject.keywordthin platesen_US
dc.titleA Quasistatic evolution model for perfectly plastic plates derived by Gamma-convergenceen_US
dc.typePreprinten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Davoli-Mora.pdf
Size:
455.25 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections