On Hamiltonian perturbations of hyperbolic systems of conservation laws, II: universality of critical behaviour

dc.contributor.areaMathematicsen_US
dc.contributor.authorDubrovin, Borisen_US
dc.contributor.departmentMathematical Physicsen_US
dc.date.accessioned2005en_US
dc.date.accessioned2011-09-07T20:28:34Z
dc.date.available2005en_US
dc.date.available2011-09-07T20:28:34Z
dc.date.issued2005en_US
dc.description.abstractHamiltonian perturbations of the simplest hyperbolic equation $u_t + a(u) u_x=0$ are studied. We argue that the behaviour of solutions to the perturbed equation near the point of gradient catastrophe of the unperturbed one should be essentially independent on the choice of generic perturbation neither on the choice of generic solution. Moreover, this behaviour is described by a special solution to an integrable fourth order ODE.en_US
dc.format.extent250067 bytesen_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationComm. Math. Phys. 267 (2006) 117-139en_US
dc.identifier.urihttps://openscience.sissa.it/handle/1963/1786en_US
dc.language.isoen_USen_US
dc.relation.ispartofseriesSISSA;89/2005/FMen_US
dc.relation.ispartofseriesarXiv.org;math-ph/0510032en_US
dc.relation.uri10.1007/s00220-006-0021-5en_US
dc.titleOn Hamiltonian perturbations of hyperbolic systems of conservation laws, II: universality of critical behaviouren_US
dc.typePreprinten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
math-ph0510032.pdf
Size:
245.28 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.74 KB
Format:
Plain Text
Description:
Collections