Compactness by maximality
dc.contributor.area | Mathematics | en_US |
dc.contributor.author | Zagatti, Sandro | |
dc.date.accessioned | 2018-05-24T07:53:14Z | |
dc.date.available | 2018-05-24T07:53:14Z | |
dc.date.issued | 2011 | |
dc.description.abstract | We derive a compactness property in the Sobolev space $W^{1,1}(\O)$ in order to study the Dirichlet problem for the eikonal equation \begin{displaymath} \begin{cases} \ha |\n u(x)|^2 - a(x) = 0 & \ \textrm{in} \ \O\cr u(x)=\varphi(x) & \ \textrm{on} \ \partial \O, \end{cases} \end{displaymath} without continuity assumptions on the map $a$. | en_US |
dc.identifier.uri | https://openscience.sissa.it/handle/1963/35317 | |
dc.language.iso | en | en_US |
dc.miur.area | 1 | en_US |
dc.subject | Eikonal equation; Strong compactness | en_US |
dc.title | Compactness by maximality | en_US |
dc.type | Preprint | en_US |