Compactness by maximality

dc.contributor.areaMathematicsen_US
dc.contributor.authorZagatti, Sandro
dc.date.accessioned2018-05-24T07:53:14Z
dc.date.available2018-05-24T07:53:14Z
dc.date.issued2011
dc.description.abstractWe derive a compactness property in the Sobolev space $W^{1,1}(\O)$ in order to study the Dirichlet problem for the eikonal equation \begin{displaymath} \begin{cases} \ha |\n u(x)|^2 - a(x) = 0 & \ \textrm{in} \ \O\cr u(x)=\varphi(x) & \ \textrm{on} \ \partial \O, \end{cases} \end{displaymath} without continuity assumptions on the map $a$.en_US
dc.identifier.urihttps://openscience.sissa.it/handle/1963/35317
dc.language.isoenen_US
dc.miur.area1en_US
dc.subjectEikonal equation; Strong compactnessen_US
dc.titleCompactness by maximalityen_US
dc.typePreprinten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Co_max.pdf
Size:
340.2 KB
Format:
Adobe Portable Document Format
Description:
Preprint
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections