Integrability of Dirac reduced bi-Hamiltonian equations
dc.contributor.area | Mathematics | en_US |
dc.contributor.author | De Sole, Alberto | |
dc.contributor.author | Kac, Victor G. | |
dc.contributor.author | Valeri, Daniele | |
dc.date.accessioned | 2014-01-31T07:17:08Z | |
dc.date.available | 2014-01-31T07:17:08Z | |
dc.date.issued | 2014-01 | |
dc.description | 15 pages | en_US |
dc.description.abstract | First, we give a brief review of the theory of the Lenard-Magri scheme for a non-local bi-Poisson structure and of the theory of Dirac reduction. These theories are used in the remainder of the paper to prove integrability of three hierarchies of bi-Hamiltonian PDE's, obtained by Dirac reduction from some generalized Drinfeld-Sokolov hierarchies. | en_US |
dc.identifier.uri | https://openscience.sissa.it/handle/1963/7247 | |
dc.language.iso | en | en_US |
dc.miur.area | 1 | en_US |
dc.publisher | SISSA | en_US |
dc.relation.ispartofseries | arXiv:1401.6006; | |
dc.subject.miur | MAT/07 FISICA MATEMATICA | |
dc.title | Integrability of Dirac reduced bi-Hamiltonian equations | en_US |
dc.type | Preprint | en_US |