An Optimal Transportation Metric for Solutions of the Camassa-Holm Equation

dc.contributor.areaMathematicsen_US
dc.contributor.authorBressan, Albertoen_US
dc.contributor.authorFonte, Massimoen_US
dc.contributor.departmentFunctional Analysis and Applicationsen_US
dc.date.accessioned2005en_US
dc.date.accessioned2011-09-07T20:27:45Z
dc.date.available2005en_US
dc.date.available2011-09-07T20:27:45Z
dc.date.issued2005en_US
dc.description.abstractIn this paper we construct a global, continuous flow of solutions to the Camassa-Holm equation on the entire space H1. Our solutions are conservative, in the sense that the total energy int[(u2 + u2x) dx] remains a.e. constant in time. Our new approach is based on a distance functional J(u, v), defined in terms of an optimal transportation problem, which satisfies d dtJ(u(t), v(t)) ≤ κ · J(u(t), v(t)) for every couple of solutions. Using this new distance functional, we can construct arbitrary solutions as the uniform limit of multi-peakon solutions, and prove a general uniqueness result.en_US
dc.format.extent261370 bytesen_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationMethods Appl. Anal. 12 (2005) 191-219en_US
dc.identifier.urihttps://openscience.sissa.it/handle/1963/1719en_US
dc.language.isoen_USen_US
dc.relation.ispartofseriesSISSA;27/2005/Men_US
dc.relation.ispartofseriesarXiv.org;math.AP/0504450en_US
dc.titleAn Optimal Transportation Metric for Solutions of the Camassa-Holm Equationen_US
dc.typePreprinten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
math.AP0504450.pdf
Size:
255.24 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.74 KB
Format:
Plain Text
Description:
Collections