Derivation of a rod theory for phase-transforming materials

dc.contributor.areaMathematicsen_US
dc.contributor.authorMora, Maria Giovannaen_US
dc.contributor.authorMüller, Stefanen_US
dc.contributor.departmentFunctional Analysis and Applicationsen_US
dc.date.accessioned2005en_US
dc.date.accessioned2011-09-07T20:28:41Z
dc.date.available2005en_US
dc.date.available2011-09-07T20:28:41Z
dc.date.issued2005en_US
dc.description.abstractA rigorous derivation is given of a rod theory for a multiphase material,starting from three-dimensional nonlinear elasticity. The stored energy density is supposed to be nonnegative and to vanish exactly on a set consisting of two copies of the group of rotations SO(3). The two potential wells correspond to the two crystalline configurations preferred by the material. We find the optimal scaling of the energy in terms of the diameter of the rod and we identify the limit, as the diameter goes to zero, in the sense of Gamma-convergence.en_US
dc.format.extent23269 bytesen_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationCalc. Var. Partial Differential Equations 28 (2007) 161-178en_US
dc.identifier.urihttps://openscience.sissa.it/handle/1963/1751en_US
dc.language.isoen_USen_US
dc.relation.ispartofseriesSISSA;21/2005/Men_US
dc.relation.uri10.1007/s00526-006-0039-8en_US
dc.titleDerivation of a rod theory for phase-transforming materialsen_US
dc.title.alternativeDerivation of a rod theory for multiphase materialsen_US
dc.typePreprinten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
21M.pdf
Size:
22.72 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.74 KB
Format:
Plain Text
Description:
Collections