On the tritronquée solutions of P$_I^2$

dc.contributor.areaMathematicsen_US
dc.contributor.authorGrava, Tamara
dc.contributor.authorKapaev, Andrei
dc.contributor.authorKlein, Christian
dc.date.accessioned2014-01-15T07:55:21Z
dc.date.available2014-01-15T07:55:21Z
dc.date.issued2014-01-15
dc.description.abstractFor equation P$_I^2$, the second member in the P$_I$ hierarchy, we prove existence of various degenerate solutions depending on the complex parameter $t$ and evaluate the asymptotics in the complex $x$ plane for $|x|\to\infty$ and $t=o(x^{2/3})$. Using this result, we identify the most degenerate solutions $u^{(m)}(x,t)$, $\hat u^{(m)}(x,t)$, $m=0,\dots,6$, called {\em tritronqu\'ee}, describe the quasi-linear Stokes phenomenon and find the large $n$ asymptotics of the coefficients in a formal expansion of these solutions. We supplement our findings by a numerical study of the tritronqu\'ee solutions.en_US
dc.identifier.urihttps://openscience.sissa.it/handle/1963/7244
dc.language.isoenen_US
dc.miur.area1en_US
dc.publisherSISSAen_US
dc.subject.miurMAT/07 FISICA MATEMATICA
dc.titleOn the tritronquée solutions of P$_I^2$en_US
dc.typePreprinten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
tritronquee_coeff.pdf
Size:
736.05 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections