Non-well-ordered lower and upper solutions for semilinear systems of PDEs
dc.contributor.author | Fonda, Alessandro | |
dc.contributor.author | Klun, Giuliano | |
dc.contributor.author | Sfecci, Andrea | |
dc.date.accessioned | 2020-05-04T10:02:00Z | |
dc.date.available | 2020-05-04T10:02:00Z | |
dc.date.issued | 2020-05 | |
dc.description.abstract | We prove existence results for systems of boundary value problems involving elliptic second order diļ¬erential operators. The as-sumptions involve lower and upper solutions, which may be either well-ordered, or not at all. The results are stated in an abstract framework, and can be translated also for systems of parabolic type. | en_US |
dc.identifier.uri | https://openscience.sissa.it/handle/1963/35350 | |
dc.language.iso | en | en_US |
dc.publisher | SISSA | en_US |
dc.relation.ispartofseries | SISSA;08/2020/MATE | |
dc.subject.keyword | elliptic operator; boundary value problems; Dirichlet and Neumann problem; lower and upper solutions; degree theory | |
dc.title | Non-well-ordered lower and upper solutions for semilinear systems of PDEs | en_US |
dc.type | Preprint | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- p2020_F.-Klun-Sfecci3_preprint-1.pdf
- Size:
- 904.34 KB
- Format:
- Adobe Portable Document Format
- Description:
- Preprint