Non-well-ordered lower and upper solutions for semilinear systems of PDEs

dc.contributor.authorFonda, Alessandro
dc.contributor.authorKlun, Giuliano
dc.contributor.authorSfecci, Andrea
dc.date.accessioned2020-05-04T10:02:00Z
dc.date.available2020-05-04T10:02:00Z
dc.date.issued2020-05
dc.description.abstractWe prove existence results for systems of boundary value problems involving elliptic second order diļ¬€erential operators. The as-sumptions involve lower and upper solutions, which may be either well-ordered, or not at all. The results are stated in an abstract framework, and can be translated also for systems of parabolic type.en_US
dc.identifier.urihttps://openscience.sissa.it/handle/1963/35350
dc.language.isoenen_US
dc.publisherSISSAen_US
dc.relation.ispartofseriesSISSA;08/2020/MATE
dc.subject.keywordelliptic operator; boundary value problems; Dirichlet and Neumann problem; lower and upper solutions; degree theory
dc.titleNon-well-ordered lower and upper solutions for semilinear systems of PDEsen_US
dc.typePreprinten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
p2020_F.-Klun-Sfecci3_preprint-1.pdf
Size:
904.34 KB
Format:
Adobe Portable Document Format
Description:
Preprint
Collections