Results on the minimization of the Dirichlet functional among semicartesian parametrizations

dc.contributor.areaMathematicsen_US
dc.contributor.authorTealdi, Lucia
dc.contributor.authorBellettini, Giovanni
dc.contributor.authorPaolini, Maurizio
dc.date.accessioned2015-08-10T07:53:58Z
dc.date.available2015-08-10T07:53:58Z
dc.date.issued2015-08-07
dc.descriptionThe article is compsed of 18 pages and is recorded in PDF formaten_US
dc.description.abstractWe start to investigate the existence of conformal minimizers for the Dirichlet functional in the setting of the so-called semicartesian parametrizations, adapting to this context some techniques used in solving the classical Plateau's problem. The final goal is to find area minimizing semicartesian parametrizations spanning a Jordan curve obtained as union of two graphs; this problem appeared in the study of the relaxed area functional for maps from the plane to the plane jumping on a line.en_US
dc.identifier.urihttps://openscience.sissa.it/handle/1963/34488
dc.language.isoenen_US
dc.miur.area1en_US
dc.subjectDirichlet energyen_US
dc.subjectarea-minimizing surfacesen_US
dc.subjectsemicartesian surfacesen_US
dc.subject.miurMAT/05en_US
dc.titleResults on the minimization of the Dirichlet functional among semicartesian parametrizationsen_US
dc.typePreprinten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
bellettini_paolini_tealdi_semicart.pdf
Size:
330.21 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.3 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections