The splitting theorem in non-smooth context

dc.contributor.areaMathematicsen_US
dc.contributor.authorGigli, Nicola
dc.date.accessioned2018-02-23T12:45:43Z
dc.date.available2018-02-23T12:45:43Z
dc.date.issued2013
dc.description.abstractWe prove that an infinitesimally Hilbertian $CD(0,N)$ space containing a line splits as the product of $R$ and an infinitesimally Hilbertian $CD(0,N −1)$ space. By ‘infinitesimally Hilbertian’ we mean that the Sobolev space $W^{1,2}(X,d,m)$, which in general is a Banach space, is an Hilbert space. When coupled with a curvature-dimension bound, this condition is known to be stable with respect to measured Gromov-Hausdorff convergence.en_US
dc.identifier.urihttps://openscience.sissa.it/handle/1963/35306
dc.language.isoenen_US
dc.miur.area1en_US
dc.relation.firstpage1en_US
dc.relation.lastpage104en_US
dc.subject.miurMAT/05en_US
dc.titleThe splitting theorem in non-smooth contexten_US
dc.typePreprinten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Splittingmms-submitted.pdf
Size:
806.88 KB
Format:
Adobe Portable Document Format
Description:
Preprint
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections