Curvature flows on four manifolds with boundary

dc.contributor.areaMathematicsen_US
dc.contributor.authorNdiaye, Cheikh Birahimen_US
dc.contributor.departmentFunctional Analysis and Applicationsen_US
dc.date.accessioned2007-11-12T13:22:59Zen_US
dc.date.accessioned2011-09-07T20:26:42Z
dc.date.available2007-11-12T13:22:59Zen_US
dc.date.available2011-09-07T20:26:42Z
dc.date.issued2007-11-12T13:22:59Zen_US
dc.description.abstractGiven a compact four dimensional smooth Riemannian manifold (M, g) with smooth boundary, we consider the evolution equation by Q-curvature in the interior keeping the T-curvature and the mean curvature to be zero and the evolution equation by T-curvature at the boundary with the condition that the Q-curvature and the mean curvature vanish. Using integral method, we prove global existence and convergence for the Q-curvature flow (resp T-curvature flow) to smooth metric conformal to g of prescribed Q-curvature (resp T-curvature) under conformally invariant assumptions.en_US
dc.format.extent287073 bytesen_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.urihttps://openscience.sissa.it/handle/1963/2394en_US
dc.language.isoen_USen_US
dc.relation.ispartofseriesSISSA;81/2007/Men_US
dc.titleCurvature flows on four manifolds with boundaryen_US
dc.typePreprinten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
cflowsbound.pdf
Size:
280.34 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.74 KB
Format:
Plain Text
Description:
Collections