Stability of planar nonlinear switched systems
dc.contributor.area | Mathematics | en_US |
dc.contributor.author | Boscain, Ugo | en_US |
dc.contributor.author | Charlot, Grégoire | en_US |
dc.contributor.author | Sigalotti, Mario | en_US |
dc.contributor.department | Functional Analysis and Applications | en_US |
dc.date.accessioned | 2005 | en_US |
dc.date.accessioned | 2011-09-07T20:27:46Z | |
dc.date.available | 2005 | en_US |
dc.date.available | 2011-09-07T20:27:46Z | |
dc.date.issued | 2005 | en_US |
dc.description.abstract | We consider the time-dependent nonlinear system ˙ q(t) = u(t)X(q(t)) + (1 − u(t))Y (q(t)), where q ∈ R2, X and Y are two smooth vector fields, globally asymptotically stable at the origin and u : [0,∞) → {0, 1} is an arbitrary measurable function. Analysing the topology of the set where X and Y are parallel, we give some sufficient and some necessary conditions for global asymptotic stability, uniform with respect to u(.). Such conditions can be verified without any integration or construction of a Lyapunov function, and they are robust under small perturbations of the vector fields. | en_US |
dc.format.extent | 322404 bytes | en_US |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Discrete Contin. Dyn. Syst. 15 (2006) 415-432 | en_US |
dc.identifier.uri | https://openscience.sissa.it/handle/1963/1710 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartofseries | SISSA;04/2005/M | en_US |
dc.relation.ispartofseries | arXiv.org;math.OC/0502361 | en_US |
dc.title | Stability of planar nonlinear switched systems | en_US |
dc.type | Preprint | en_US |