Stability of planar nonlinear switched systems

dc.contributor.areaMathematicsen_US
dc.contributor.authorBoscain, Ugoen_US
dc.contributor.authorCharlot, Grégoireen_US
dc.contributor.authorSigalotti, Marioen_US
dc.contributor.departmentFunctional Analysis and Applicationsen_US
dc.date.accessioned2005en_US
dc.date.accessioned2011-09-07T20:27:46Z
dc.date.available2005en_US
dc.date.available2011-09-07T20:27:46Z
dc.date.issued2005en_US
dc.description.abstractWe consider the time-dependent nonlinear system ˙ q(t) = u(t)X(q(t)) + (1 − u(t))Y (q(t)), where q ∈ R2, X and Y are two smooth vector fields, globally asymptotically stable at the origin and u : [0,∞) → {0, 1} is an arbitrary measurable function. Analysing the topology of the set where X and Y are parallel, we give some sufficient and some necessary conditions for global asymptotic stability, uniform with respect to u(.). Such conditions can be verified without any integration or construction of a Lyapunov function, and they are robust under small perturbations of the vector fields.en_US
dc.format.extent322404 bytesen_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationDiscrete Contin. Dyn. Syst. 15 (2006) 415-432en_US
dc.identifier.urihttps://openscience.sissa.it/handle/1963/1710en_US
dc.language.isoen_USen_US
dc.relation.ispartofseriesSISSA;04/2005/Men_US
dc.relation.ispartofseriesarXiv.org;math.OC/0502361en_US
dc.titleStability of planar nonlinear switched systemsen_US
dc.typePreprinten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
math.OC0502361.pdf
Size:
314.85 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.74 KB
Format:
Plain Text
Description:
Collections