Moduli Spaces of Semistable Sheaves on Projective Deligne-Mumford Stacks

dc.contributor.areaMathematicsen_US
dc.contributor.authorNironi, Fabioen_US
dc.contributor.departmentMathematical Physicsen_US
dc.date.accessioned2008-11-17T11:53:59Zen_US
dc.date.accessioned2011-09-07T20:22:25Z
dc.date.available2008-11-17T11:53:59Zen_US
dc.date.available2011-09-07T20:22:25Z
dc.date.issued2008-11-17T11:53:59Zen_US
dc.description.abstractWe introduce a notion of Gieseker stability for coherent sheaves on tame Deligne-Mumford stacks with projective moduli scheme and some chosen generating sheaf on the stack in the sense of Olsson and Starr \cite{MR2007396}. We prove that this stability condition is open, and pure dimensional semistable sheaves form a bounded family. We explicitly construct the moduli stack of semistable sheaves as a finite type global quotient, and study the moduli scheme of stable sheaves and its natural compactification in the same spirit as the seminal paper of Simpson \cite{MR1307297}. With this general machinery we are able to retrieve, as special cases, results of Lieblich \cite{MR2309155} and Yoshioka \cite{MR2306170} about moduli of twisted sheaves and parabolic stability introduced by Maruyama-Yokogawa in \cite{MR1162674}.en_US
dc.format.extent605517 bytesen_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.urihttps://openscience.sissa.it/handle/1963/3287en_US
dc.language.isoen_USen_US
dc.relation.ispartofseriesSISSA;69/2008/FMen_US
dc.relation.ispartofseriesarXiv.org;0811.1949en_US
dc.titleModuli Spaces of Semistable Sheaves on Projective Deligne-Mumford Stacksen_US
dc.typePreprinten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0811.1949v1.pdf
Size:
591.33 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.74 KB
Format:
Plain Text
Description:
Collections