Uhlenbeck-Donaldson compactification for framed sheaves on projective surfaces
dc.contributor.area | Mathematics | en_US |
dc.contributor.author | Bruzzo, Ugo | en_US |
dc.contributor.author | Markushevich, Dimitri | en_US |
dc.contributor.author | Tikhomirov, Alexander | en_US |
dc.contributor.department | Mathematical Physics | en_US |
dc.date.accessioned | 2010-09-08T08:00:00Z | en_US |
dc.date.accessioned | 2011-09-07T20:19:23Z | |
dc.date.available | 2010-09-08T08:00:00Z | en_US |
dc.date.available | 2011-09-07T20:19:23Z | |
dc.date.issued | 2010-09-08T08:00:00Z | en_US |
dc.description.abstract | We construct a compactification $M^{\mu ss}$ of the Uhlenbeck-Donaldson type for the moduli space of slope stable framed bundles. This is a kind of a moduli space of slope semistable framed sheaves. We show that there exists a projective morphism $\gamma \colon M^s \to M^{\mu ss}$, where $M^s$ is the moduli space of S-equivalence classes of Gieseker-semistable framed sheaves. The space $M^{\mu ss}$ has a natural set-theoretic stratification which allows one, via a Hitchin-Kobayashi correspondence, to compare it with the moduli spaces of framed ideal instantons. | en_US |
dc.format.extent | 496341 bytes | en_US |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.uri | https://openscience.sissa.it/handle/1963/4049 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartofseries | SISSA;59/2010/FM | en_US |
dc.relation.ispartofseries | arXiv.org;1009.0856v1 | en_US |
dc.title | Uhlenbeck-Donaldson compactification for framed sheaves on projective surfaces | en_US |
dc.type | Preprint | en_US |