Moduli space of pairs over projective stacks

dc.contributor.areaMathematicsen_US
dc.contributor.authorAndreini, Elena
dc.contributor.departmentMathematical Physicsen_US
dc.date.accessioned2012-01-23T16:10:05Z
dc.date.available2012-01-23T16:10:05Z
dc.date.issued2011-05-27
dc.description.abstractLet $\clX$ a projective stack over an algebraically closed field $k$ of characteristic 0. Let $\clE$ be a generating sheaf over $\clX$ and $\clO_X(1)$ a polarization of its coarse moduli space $X$. We define a notion of pair which is the datum of a non vanishing morphism $\Gamma\otimes\clE\to \clF$ where $\Gamma$ is a finite dimensional $k$ vector space and $\clF$ is a coherent sheaf over $\clX$. We construct the stack and the moduli space of semistable pairs. The notion of semistability depends on a polynomial parameter and it is dictated by the GIT construction of the moduli space.en_US
dc.identifier.urihttps://openscience.sissa.it/handle/1963/5263
dc.language.isoenen_US
dc.miur.area1en_US
dc.publisherSISSAen_US
dc.relation.ispartofseriesarXiv:1105.5637v1;
dc.subject.miurMAT/03 GEOMETRIA
dc.titleModuli space of pairs over projective stacksen_US
dc.typePreprinten_US
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1105.5637v1.pdf
Size:
279 B
Format:
Adobe Portable Document Format
Description:
File downloaded from arXiv.org
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections