A continuous dependence result for a dynamic debonding model in dimension one

dc.contributor.areaMathematicsen_US
dc.contributor.authorRiva, Filippo
dc.date.accessioned2019-03-07T10:11:29Z
dc.date.available2019-03-07T10:11:29Z
dc.date.issued2019-03-07
dc.description.abstractIn this paper we address the problem of continuous dependence on initial and boundary data for a one-dimensional debonding model describing a thin film peeled away from a substrate. The system underlying the process couples the weakly damped wave equation with a Griffith’s criterion which rules the evolution of the debonded region. We show that under general convergence assumptions on the data the corresponding solutions converge to the limit one with respect to different natural topologies.en_US
dc.identifier.urihttps://openscience.sissa.it/handle/1963/35329
dc.language.isoenen_US
dc.miur.area1en_US
dc.publisherSISSAen_US
dc.relation.firstpage1en_US
dc.relation.ispartofseriesSISSA;05/2019/MATE
dc.relation.lastpage26en_US
dc.subjectThin filmsen_US
dc.subjectDynamic debondingen_US
dc.subjectWave equation in time-dependent domainsen_US
dc.subjectGriffith’s criterionen_US
dc.subjectContinuous dependenceen_US
dc.titleA continuous dependence result for a dynamic debonding model in dimension oneen_US
dc.typePreprinten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PREPRINT_A_continuous_dependence_result_for_a_dynamic_debonding_model_in_dimension_one.pdf
Size:
515.11 KB
Format:
Adobe Portable Document Format
Description:
Preprint
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections