Multiscale homogenization of convex functionals with discontinuous integrand

dc.contributor.areaMathematicsen_US
dc.contributor.authorBarchiesi, Marcoen_US
dc.contributor.departmentFunctional Analysis and Applicationsen_US
dc.date.accessioned2005en_US
dc.date.accessioned2011-09-07T20:27:45Z
dc.date.available2005en_US
dc.date.available2011-09-07T20:27:45Z
dc.date.issued2005en_US
dc.description.abstractThis article is devoted to obtain the $\Gamma$-limit, as $\epsilon$ tends to zero, of the family of functionals $$F_{\epsilon}(u)=\int_{\Omega}f\Bigl(x,\frac{x}{\epsilon},..., \frac{x}{\epsilon^n},\nabla u(x)\Bigr)dx$$, where $f=f(x,y^1,...,y^n,z)$ is periodic in $y^1,...,y^n$, convex in $z$ and satisfies a very weak regularity assumption with respect to $x,y^1,...,y^n$. We approach the problem using the multiscale Young measures.en_US
dc.format.extent252790 bytesen_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationJournal of Convex Analysis 14 (2007) 205-226en_US
dc.identifier.urihttps://openscience.sissa.it/handle/1963/1718en_US
dc.language.isoen_USen_US
dc.relation.ispartofseriesSISSA;45/2005/Men_US
dc.relation.ispartofseriesarXiv.org;math.AP/0506409en_US
dc.titleMultiscale homogenization of convex functionals with discontinuous integranden_US
dc.typePreprinten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
math.AP0506409.pdf
Size:
247.36 KB
Format:
Adobe Portable Document Format
Collections