Multiscale homogenization of convex functionals with discontinuous integrand
dc.contributor.area | Mathematics | en_US |
dc.contributor.author | Barchiesi, Marco | en_US |
dc.contributor.department | Functional Analysis and Applications | en_US |
dc.date.accessioned | 2005 | en_US |
dc.date.accessioned | 2011-09-07T20:27:45Z | |
dc.date.available | 2005 | en_US |
dc.date.available | 2011-09-07T20:27:45Z | |
dc.date.issued | 2005 | en_US |
dc.description.abstract | This article is devoted to obtain the $\Gamma$-limit, as $\epsilon$ tends to zero, of the family of functionals $$F_{\epsilon}(u)=\int_{\Omega}f\Bigl(x,\frac{x}{\epsilon},..., \frac{x}{\epsilon^n},\nabla u(x)\Bigr)dx$$, where $f=f(x,y^1,...,y^n,z)$ is periodic in $y^1,...,y^n$, convex in $z$ and satisfies a very weak regularity assumption with respect to $x,y^1,...,y^n$. We approach the problem using the multiscale Young measures. | en_US |
dc.format.extent | 252790 bytes | en_US |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Journal of Convex Analysis 14 (2007) 205-226 | en_US |
dc.identifier.uri | https://openscience.sissa.it/handle/1963/1718 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartofseries | SISSA;45/2005/M | en_US |
dc.relation.ispartofseries | arXiv.org;math.AP/0506409 | en_US |
dc.title | Multiscale homogenization of convex functionals with discontinuous integrand | en_US |
dc.type | Preprint | en_US |
Files
Original bundle
1 - 1 of 1