Singular perturbations of finite dimensional gradient flows
dc.contributor.area | Mathematics | en_US |
dc.contributor.author | Zanini, Chiara | en_US |
dc.contributor.department | Functional Analysis and Applications | en_US |
dc.date.accessioned | 2006-07-26T08:45:16Z | en_US |
dc.date.accessioned | 2011-09-07T20:27:34Z | |
dc.date.available | 2006-07-26T08:45:16Z | en_US |
dc.date.available | 2011-09-07T20:27:34Z | |
dc.date.issued | 2006-07-26T08:45:16Z | en_US |
dc.description.abstract | In this paper we give a description of the asymptotic behavior, as $\epsilon\to 0$, of the $\epsilon$-gradient flow in the finite dimensional case. Under very general assumptions we prove that it converges to an evolution obtained by connecting some smooth branches of solutions to the equilibrium equation (slow dynamics) through some heteroclinic solutions of the gradient flow (fast dynamics). | en_US |
dc.format.extent | 241737 bytes | en_US |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Discrete Contin. Dyn. Syst. 18 (2007) 657-675 | en_US |
dc.identifier.uri | https://openscience.sissa.it/handle/1963/1847 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartofseries | SISSA;41/2006/M | en_US |
dc.relation.ispartofseries | arXiv.org;math.FA/0607461 | en_US |
dc.title | Singular perturbations of finite dimensional gradient flows | en_US |
dc.type | Preprint | en_US |