Global, finite energy, weak solutions for the NLS with rough, time-dependent magnetic potentials

Loading...
Thumbnail Image
Date
2017
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
We prove the existence of weak solutions in the space of energy for a class of nonlinear Schrödinger equations in the presence of a external, rough, time-dependent magnetic potential. Under our assumptions, it is not possible to study the problem by means of usual arguments like resolvent techniques or Fourier integral operators, for example. We use a parabolic regularisation, and we solve the approximating Cauchy problem. This is achieved by obtaining suitable smoothing estimates for the dissipative evolution. The total mass and energy bounds allow to extend the solution globally in time. We then infer sufficient compactness properties in order to produce a global-in-time finite energy weak solution to our original problem.
Description
Keywords
Non-linear Schrödinger equation, Magnetic potentials, Viscosity regularisation, Strichartz estimates, Weak solutions
Citation
Collections