Computing Amplitudes in topological M-theory

dc.contributor.areaMathematicsen_US
dc.contributor.authorBonelli, Giulioen_US
dc.contributor.authorTanzini, Alessandroen_US
dc.contributor.authorZabzine, Maximen_US
dc.contributor.departmentMathematical Physicsen_US
dc.date.accessioned2006-12-07T16:26:28Zen_US
dc.date.accessioned2011-09-07T20:27:06Z
dc.date.available2006-12-07T16:26:28Zen_US
dc.date.available2011-09-07T20:27:06Z
dc.date.issued2006-12-07T16:26:28Zen_US
dc.description.abstractWe define a topological quantum membrane theory on a seven dimensional manifold of $G_2$ holonomy. We describe in detail the path integral evaluation for membrane geometries given by circle bundles over Riemann surfaces. We show that when the target space is $CY_3\times S^1$ quantum amplitudes of non-local observables of membranes wrapping the circle reduce to the A-model amplitudes. In particular for genus zero we show that our model computes the Gopakumar-Vafa invariants. Moreover, for membranes wrapping calibrated homology spheres in the $CY_3$, we find that the amplitudes of our model are related to Joyce invariants.en_US
dc.format.extent307312 bytesen_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationJHEP 03 (2007) 023en_US
dc.identifier.urihttps://openscience.sissa.it/handle/1963/1901en_US
dc.language.isoen_USen_US
dc.relation.ispartofseriesSISSA;74/2006/FMen_US
dc.relation.ispartofseriesarXiv.org;hep-th/0611327en_US
dc.relation.uri10.1088/1126-6708/2007/03/023en_US
dc.titleComputing Amplitudes in topological M-theoryen_US
dc.typePreprinten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
hep-th0611327.pdf
Size:
300.11 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.74 KB
Format:
Plain Text
Description:

Collections