Computing Amplitudes in topological M-theory
dc.contributor.area | Mathematics | en_US |
dc.contributor.author | Bonelli, Giulio | en_US |
dc.contributor.author | Tanzini, Alessandro | en_US |
dc.contributor.author | Zabzine, Maxim | en_US |
dc.contributor.department | Mathematical Physics | en_US |
dc.date.accessioned | 2006-12-07T16:26:28Z | en_US |
dc.date.accessioned | 2011-09-07T20:27:06Z | |
dc.date.available | 2006-12-07T16:26:28Z | en_US |
dc.date.available | 2011-09-07T20:27:06Z | |
dc.date.issued | 2006-12-07T16:26:28Z | en_US |
dc.description.abstract | We define a topological quantum membrane theory on a seven dimensional manifold of $G_2$ holonomy. We describe in detail the path integral evaluation for membrane geometries given by circle bundles over Riemann surfaces. We show that when the target space is $CY_3\times S^1$ quantum amplitudes of non-local observables of membranes wrapping the circle reduce to the A-model amplitudes. In particular for genus zero we show that our model computes the Gopakumar-Vafa invariants. Moreover, for membranes wrapping calibrated homology spheres in the $CY_3$, we find that the amplitudes of our model are related to Joyce invariants. | en_US |
dc.format.extent | 307312 bytes | en_US |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | JHEP 03 (2007) 023 | en_US |
dc.identifier.uri | https://openscience.sissa.it/handle/1963/1901 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartofseries | SISSA;74/2006/FM | en_US |
dc.relation.ispartofseries | arXiv.org;hep-th/0611327 | en_US |
dc.relation.uri | 10.1088/1126-6708/2007/03/023 | en_US |
dc.title | Computing Amplitudes in topological M-theory | en_US |
dc.type | Preprint | en_US |