
ar
X

iv
:h

ep
-t

h/
05

03
01

8 
v1

   
2 

M
ar

 2
00

5

SISSA/10/2005/FM

Mass Generation in Perturbed Massless Integrable Models

D. Controzzi and G. Mussardo

International School for Advanced Studies and INFN

Via Beirut 1, 34100 Trieste, Italy

Abstract

We extend form-factor perturbation theory to non–integrable deformations of mass-

less integrable models, in order to address the problem of mass generation in such

systems. With respect to the standard renormalisation group analysis this approach

is more suitable for studying the particle content of the perturbed theory. Analo-

gously to the massive case, interesting information can be obtained already at first

order, such as the identification of the operators which create a mass gap and those

which induce the confinement of the massless particles in the perturbed theory.



Introduction. Given the large number of remarkable results obtained from the study

of two–dimensional integrable quantum field theories (IQFTs), at present one of the most

interesting challenges consists of developing a systematic approach to study non-integrable

models, at least when they are deformations of integrable ones. For massive field theories

a convenient perturbative scheme, based on the exact knowledge of the form-factors (FFs)

of the original integrable theory, was suggested in [1]. Already at first order, it proved able

to provide a great deal of information, such as the evolution of the particle content, the

variation of the masses and the change of the ground state energy – results successfully

checked by numerical studies.

The main purpose of this paper is to extend Form Factor Perturbation Theory (FFPT)

to non–integrable deformations of massless IQFTs. The most fundamental question that

one may ask in this context is whether a perturbation creates a gap in the excitation

spectrum – a problem usually addressed via the renormalisation group (RG) equations

near a fixed point [2]. Moreover, if massive particles are created, one would like to

understand whether they are adiabatically related to the original massless excitations or,

like in the massive case, confinement takes place. Since the RG eq.s cannot provide a

complete answer to any of the above questions, it is worth exploring other alternative

routes. The FFPT relies directly on the particle description of the unperturbed theory

and, for this reason, it seems to be the most natural and suitable approach for studying

the evolution of the particle content when the perturbation is switched on.

Our analysis is presently limited to the first order of FFPT, its extension to higher

orders being, as in the massive case, an interesting but non-trivial mathematical prob-

lem. Despite the fact that one must be careful in handling results at such low order,

some useful conclusions can nevertheless be reached. For instance, it will be possible to

discriminate between operators which do not spoil the massless nature of the theory and

those which instead induce a mass gap in the spectrum. Moreover, the confinement of

the original massless excitations can be traced back to the non–local properties of the

perturbing operator with respect to them. These results provide the first information on

the perturbed theory and may guide a further analysis of its properties. It should be

stressed that answering the above questions in their full generality is, obviously, a fairly

complicated problem since it concerns the global structure of the RG flows rather than

their local properties around the fixed points. It is well known, for instance, that adding

a relevant perturbation to a massless action does not necessarily imply that the resulting

infrared theory will be massive: indeed the perturbing operator may induce a flow into a

new critical point, with some of the massive excitations decoupled from the new massless

ones [3, 4]. An example even more subtle is given by the roaming trajectories discovered

by Al. Zamolodchikov [5] (and further analysed in [6, 7]), i.e. an infinite cascade of
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massless flows finally ending in a massive phase.

FFPT for Massive Field Theories. Consider non–integrable theories obtained as

a deformation of an integrable action Aint

A = Aint + λ

∫

d2xΨ(x) . (1)

The exact knowledge of the FFs of the operator Ψ(x) on the asymptotic states of the

unperturbed theory allows one to set up an expansion of various physical quantities of

the new theory in powers of λ, the so called FFPT [1]. We present initially some known

results of FFPT for massive theories in a way that is more suitable for the extension

to the massless case. It is useful to recall that in most of the cases of interest, the

integrable action of a massive theory can be defined in terms of a deformation of a CFT

[8], Aint = ACFT +g
∫

d2xΦ(x), where Φ(x) is a relevant scalar field of conformal weights

∆Φ = ∆Φ < 1.

Let us first assume that the theory has only one massive particle in the spectrum, A(β),

where β parameterises the dispersion relation: p0 = m cosh β and p1 = m sinh β. The

integrability of the theory allows one to compute its exact factorised scattering amplitudes

[8], S(β12) (β12 = β1 − β2), and the FFs [9] of the various operators O on the set of

asymptotic states

FO(β1, β2, . . . , βn) = 〈0 | O(0) | A(β1)A(β2) . . . A(βn)〉 . (2)

A convenient way to study the mass correction induced by the non–integrable deforma-

tion (1) is to employ the Hamiltonian formalism, in the same spirit of standard quantum

mechanics perturbation theory. The Hamiltonian associated to (1) can be written as

H =
1

2π

∫

dx1 T00(x
1, 0) − λ

∫

dx1 Ψ(x1, 0) , (3)

where Tµν(x) is the stress–energy tensor of the integrable theory, Aint. The operator T00

can be expressed in terms of the its trace, Θ(x), using the conservation law ∂µTµν = 0,

∂2
1 Θ(x1, x0) = (∂2

1 − ∂2
0)T00(x

1, x0) . (4)

In particular, for the two–particle Form Factor we have

〈0 | T00(x
1, x0) | A(βi)A(βj)〉 = − sinh2 βi + βj

2
〈0 | Θ(x1, x0) | A(βi)A(βj)〉 . (5)

The essential results of FFPT are easily re-derived within this formalism. Let us first

consider the unperturbed integrable case, λ = 0. Evaluating the matrix element of both

sides of Eq. (3) on the asymptotic states 〈A(βi) | and | A(βj)〉, and using the relation (5),
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one obtains the usual normalisation condition for the trace of the stress-energy tensor of

the massive integrable theory,

〈A(β) | Θ(0) | A(β)〉 = FΘ(iπ) = 2πm2 , (6)

an equation which shows the relationship between the FF of this operator and the mass

scales of the theory.

Repeating the same procedure for the non–integrable theory (3), one obtains instead

the first order correction to the mass of the particles, as given in [1],

δm2 ≃ 2 λFΨ(iπ) . (7)

If the operator Ψ(x) is non–local with respect to the particles A(β), FΨ(β) has a pole for

β = iπ and (7) diverges. This divergent correction to their masses implies the confinement

of the particles A(β), that are no longer excitations of the action (1) [1]. This phenomenon

appears for instance in the magnetic deformation of the low–temperature phase of the Ising

model [1, 10, 11] as well as in two-frequency sine-Gordon model [12].

It should be noticed that, since this is a strong coupling analysis, i.e. carried out in

the infrared region (IR), if λ in (1) scales under RG, it has to be replaced in (7) by its

renormalised value at energy of the order of the mass of the theory

λ→ λeff ≃ λ(m−1) . (8)

As a consequence, unless the RG flow is known exactly, quantitative predictions can be

made only on universal mass ratios.

If the theory has n non-degenerate particles, Aa(β), with masses ma (a = 1, . . . , n;

ma 6= ma′) the above analysis can be easily extended and gives the following mass variation

δm2
a ≃ 2 λ FΨ

āa(iπ) . (9)

When some of the particles, say n′ (n′ < n), have the same mass, this equation has to be

generalised like in quantum mechanics perturbation theory for degenerate levels, i.e. the

perturbed masses are obtained by diagonalising the matrix {Mk,l} = {FΨ
k,l(iπ)}, where

indices k, l belong to the degenerate multiplet. If the symmetry of the perturbing operator

is less than the symmetry of the multiplet, the perturbation will typically split it.

Massless IQFTs. Massless non–scale invariant IQFTs are associated to RG flows

between two different fixed points. With respect to their ultraviolet fixed point, such

theories admit a well–defined description in terms of the corresponding CFT perturbed

by a relevant operator. However, from the physical point of view of selecting the low–

energy massless excitations, it is more appropriate to view them as irrelevant perturbation
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of their IR fixed point action

Amassless = AIR
CFT + g

∫

d2x Φ̂(x) + · · · , (10)

where the irrelevant field Φ̂(x) specifies the approaching direction to the CFT of the IR

fixed point. The scattering theory of massless IQFTs is discussed in detail in [4] whereas

their Form Factors in [13], so we shall outline only some basic facts below. The excitations

of these theories consist of right (R) and left (L) moving particles. They are defined as

p1 ≥ 0 and p1 ≤ 0 branches of the relativistic dispersion relation p0 = |p1|, which can be

parameterised as p0 = p1 = (M/2) eβ for the R movers, AR(β), and p0 = −p1 = (M/2) e−β

for the L movers, AL(β), where M is a mass scale. Within this parameterisation, the

Maldenstam variable for the RL scattering process is given by: sRL(βij) = M2 eβij .

Contrary to the massive case, where the threshold of the scattering process is given by

βij = 0, for the RL sector of the massless scattering the threshold is reached in the limit

βij → −∞. In the RR and LL sectors the Mandelstam variable is always zero, showing

that all analyticity arguments of the S–matrix theory cannot be applied: the scattering

amplitudes in these channels can be properly defined only as analytic continuation of the

massive case [4]. For this purpose, in fact, it is useful to regard the massless excitations

as a particular limit of the massive particles1.

Writing the S–matrix in a compact formAα1
(β1)Aα2

(β2) = Sα1,α2
(β12)Aα2

(β2)Aα1
(β1),

(αi = R,L) the equations satisfied by the FFs can be written in analogy to the massive

case [13]. For the two–particle matrix element FO

α1,α2
(β12) = 〈0|O(0)|Aα1

(β1), Aα2
(β2)〉,

we have for instance

FO

α1,α2
(β) = Sα1,α2

(β)FO

α2,α1
(−β) ;

FO

α1,α2
(β + 2πi) = e−2iπγO FO

α2,α1
(−β) , (11)

where γO is the non-locality index of the operator O with respect to the massless particles.

Their analytic structure, however, differs from the massive case. In massive theories, the

multi-particle FFs are meromorphic functions in the strip 0 ≤ Im β < 2π and present

simple pole singularities associated either to bound states or to particle-antiparticle an-

nihilation processes. In massless theories the same kinds of singularities are expected in

the RR and LL sectors, since they formally behave like the massive cases. In the RL and

1For instance, if A(β) is a massive excitation of mass m with a S–matrix equal to S(β), the massless

limit is constructed by shifting the rapidities β → βR,L ± β0/2 and taking the double limits β0 → ∞

and m → 0 while M = meβ0 is kept fixed: AR,L(β) = limβ0→∞A(β ± β0/2). When one considers the

S-matrix in the RR and LL sectors, the rapidity shifts cancel and therefore SRR(β) = SLL(β) = S(β).

As functions of the rapidity variable, these amplitudes are then expected to satisfy the same equations

valid for the massive case.
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LR sectors instead, bound state poles are absent while kinematic poles may appear only

if both particles have vanishing momentum. However, instead of producing a recursive

equation like in the massive case, here the presence of kinematic poles imposes a condition

on the asymptotic behaviour of the FF’s. In particular, like in the massive case, a pole is

present in the two-particle FF only if the operator is non-local

lim
βRL→−∞

FO

RL(iπ + βRL) = ∞ for O non − local (12)

(an analogous equation can be written for the FF in the LR sector.)

FFPT for Massless Field Theories. Suppose now that an operator Ψ̂(x) of the

infrared CFT is added to the effective action (10), so that its integrability is broken

A = Amassless + λ

∫

d2x Ψ̂(x) . (13)

Repeating initially the analysis of the previous section for the unperturbed case λ = 0,

one finds2 the following normalisation conditions for the trace of the stress-energy tensor

FΘ
RR(iπ) = FΘ

LL(iπ) = 2π ; (14)

FΘ
RL(β) = 0 . (15)

The last equation can be viewed as an essential property of a massless integrable theory,

i.e. a non-trivial generalisation to massless non-scale invariant theories of properties of

CFTs.

Consider now the case when λ is non-zero. If the perturbing operator Ψ̂(x) has van-

ishing FF on the RL (LR) sector, it is easy to see that, at the lowest order, it does not

change the masslessness nature of the theory. Indeed, it does not spoil both the validity of

eq. (15) and the analytic structure of the Green’s functions of the original massless theory.

On the contrary, if the operator Ψ̂(x) has non-vanishing FFs in the RL (LR) sector of

the theory, this perturbation immediately generates a mass gap, a quantity which can be

estimated by sandwiching Eq. (3) on R and L asymptotic states

δm ≃ 2 λeff lim
βRL→−∞

F Ψ̂
RL(iπ + βRL) . (16)

From a kinematical point of view, the above limit is the expectation value of the perturbing

operator at the (zero–energy) threshold of the crossed RL channel. In the above equation

the effective coupling constant, λeff , is defined like in (8) with m→ 0. As a consequence,

2It should be kept in mind that to avoid trivial vanishing of the RR (LL) FFs in taking the massless

limit of (5), one has to rescale scalar operators by their mass dimension O(x) → O(x)/m2∆O and define

their FFs FO
α,α(β12) = limm→0

FO(β12)

m2∆O
, where FO(β12) is the two–particle form-factor of the massive

version of the theory.
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if the perturbing operator is irrelevant with respect to the IR CFT, λeff scales to zero, i.e.

the actual mass gap vanishes in the infrared region although it is present at intermediate

scales. On the other hand, if it is relevant, it will grow to the scale of the mass being

generated. At this level the relevance of an operator has to be established by scaling

arguments. In summary, two conditions have to be fulfilled for generating, at lowest

order, a mass gap in the theory: the perturbing operator has to be relevant with non–

vanishing RL (LR) matrix elements.

Moreover, like in the massive case, the mass correction δm may be a finite or a di-

vergent quantity, depending on the locality properties of the perturbing operator with

respect to the fields that generate the massless particles. If the operator Ψ̂(x) is local,

δm is finite and the massive excitations of the perturbed theory are adiabatically related

to the massless particles of the original one. If, instead, Ψ̂(x) is a non-local operator,

it follows from Eq. (12) and (16) that δm diverges: in this case, the original massless

excitations are confined as soon as λ is switched on. In other words, the massive particles

of the perturbed theory are not associated, in this case, to the operators that create the

original massless ones. The examples discussed below should help in clarifying these two

situations.

If the theory contains more than one type of massless particle Aa,R/L (a = 1, . . . , n)

the previous approach has to be generalised in analogy with perturbation theory for de-

generate levels. Since the particles Aa,α form a complete basis for the scattering theory,

by using FFPT it should be possible, in principle, to predict whether any massless excita-

tions survive, and this is a clear advantage with respect to the RG. Although a complete

answer to this question involves the entire series in λ, nevertheless the first order of FFPT

may provide useful hints on the decoupling of massive and massless modes of the theory

under investigation.

Massless flows between minimal models. Let us now apply the above methods

to some specific examples, starting from the massless flow between the Tricritical Ising

Model (TIM) and the Critical Ising Model (CIM). The quantum field theory associated

to this RG flow can either be seen as TIM perturbed by its sub-leading energy operator ǫ′

of conformal dimensions ∆ǫ′ = ∆̄ǫ′ = 3/5 or as CIM perturbed by the irrelevant operator

T T̄ (see [4] and references therein). The factorised scattering theory for this massless

flow was first proposed in [4] and the basic FFs calculated in [13]. The spectrum consists

of massless neutral fermions, with S-matrix SRR(β) = SLL(β) = −1, while SRL(β) =

tanh (β/2 − iπ/4). As well as studying the non-integrable theory obtained by the insertion

of the energy operator ǫ(x) of the CIM, we will also consider the deformation of the

massless action by the disorder operator µ(x). The latter is non-local, γµ = 1/2, with

respect to the massless fermion excitations. The energy operator has two particle FFs
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only in the RL sector of the form [13]

F ǫ
RL(β) = Zǫ exp





β

4
−

∫

dt

t

sin2
(

(iπ−β)
2π

)

sinh t cosh t
2



 , (17)

where Zǫ is a normalisation constant. The disorder operator, on the other side, has also

FFs in the RR and LL sectors, of the form F µ
RR(β) = Z ′

µ tanh(β/2). For the FFs in the

RL sector we find

F µ
RL(β) = Zµ exp



−
β

4
−

∫

dt

t

sin2
(

(iπ−β)
2π

)

sinh t cosh t
2



 . (18)

The above results agree with the roaming limit of the FFs of the sinh-Gordon theory [15]

– a limit in which the sinh-Gordon model corresponds to the above massless flow [5, 13, 7].

Using now (16) and (17), it is easy to see that the perturbation by ǫ(x) induces a

finite mass in the system, as it could have been expected on different grounds. At the

critical point, in fact, ǫ(x) is bilinear in the fermionic operators that generate the massless

particles, ǫ ∼ ψ̄ψ, and therefore the perturbed theory describes massive fermions in the

presence of an irrelevant perturbation T T̄ .

Consider now the perturbation of the massless action by the non-local operator µ(x).

By computing the limit (16) of the two–particle FF (18) of this operator, one sees that in

this case δm diverges, i.e. the initial excitations can no longer propagate as asymptotic

states in the new vacuum of the theory created by the insertion of this field. Like in

the massive case, there is a simple explanation of this confinement phenomenon in terms

of the LG effective description of the theory [1]. Indeed, in the unperturbed theory

the elementary excitations can be equivalently considered as massless kinks interpolating

between two degenerate minima of the LG potential [14]. However the insertion of the

disorder magnetic operator µ(x) lifts the degeneracy between the minima, thus making

the kinks unstable.

As a matter of fact, the flow between the TIM and the CIM is the simplest example of

a one-parameter family of RG trajectories interpolating between the conformal minimal

models Ap, with central charge cp = 1 − 6/p(p+ 1) (p = 3, 4 describe the CIM and TIM

respectively). The flows start from A∞ and pass close to all the other minimal models,

remaining massless all the way down to the very last fixed point, p = 3, after which

they become massive [5, 6, 7]. The trajectories going out from each critical point are

described as Ap perturbed by the operator φ13 [3]: Aeff
p = Ap + λ

∫

d2xφp
13 (where the

upper index in φ13 indicates the relative CFT) and the excitations are massless kinks

interpolating between the (p− 2) degenerate vacua of the effective LG potential [14]. An

interesting problem consists of predicting the evolution of the spectrum along these flows,
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in particular the successive decoupling of the massless modes in the cascade of massless

RG flows, by applying FFPT. The analysis of this problem is however beyond the scope

of the present letter.

Spinon confinement in sigma models. Another important application of FFPT is

in the study of the mass spectrum of the O(3) non-linear sigma-model with a topological

term

Aθ =
1

2f 2

∫

d2x (∂µnα)2 + i θ T, (α = 1, 2, 3 ; n2
α = 1) (19)

where f and θ are dimensionless coupling constants and T is the integer-valued topological

term related to the instanton solutions of the model. The two values θ = (0, π) are the

only ones for which the action (19) is known to be integrable. At θ = 0 the excitations

form a massive O(3) triplet whose scattering theory was constructed in [8, 16]. At θ = π

the theory is instead massless [17, 18, 19, 20] and corresponds to the RG flow between

the c = 2 CFT and the SU(2)1 Wess-Zumino-Witten (WZW) model. The factorised

scattering theory was suggested in [17]: it consists of right and left doublets, Aa,R and

Aa,L (a = 1, 2), that transform according to the s = 1/2 representation of SU(2) (spinons).

However, as soon as one moves away from θ = π, the spinons confine [21, 22] and the

actual spectrum of the theory in the vicinity of this point has been determined in [22].

Let us discuss in some detail how the spinon confinement takes place. In the FFPT

this amounts to show that the topological term is non–local wrt the fields that create

the spinons, a property that can be easily checked by looking at the CFT limit of these

operators.

Consider Aπ as our unperturbed IQFT. Close to the IR fixed point the massless

flow can be described as a SU(2)1 WZW model perturbed by the marginally irrelevant

perturbation (Tr g)2 [17, 18, 19], Aeff
π = ASU(2)1 + γ

∫

d2x(Tr g)2 (γ > 0), where g is

the SU(2) matrix field. In terms of this formulation the perturbation that moves the

topological term away from θ = π is proportional to Tr g [18], i.e. to the only relevant

SU(2) invariant operator in the theory that breaks parity. Thus, in the vicinity of θ = π,

the model is described by the effective action

Aeff = Aeff
π + η

∫

d2xTr g , (20)

where η is a function3 of (θ − π) that vanishes when θ = π.

As discussed in Ref. [25], the spinons are created by the primary operator φ±(z)

(φ̄±(z̄)) with scaling dimension h = (1/4, 0) (h̄ = (0, 1/4)). They enter the operator

3The form of this function determines the dependence on (θ − π) of the mass gap m, since it scales

as m ∼ η2/3, up to logarithmic correction [23]. In a recent paper [24] it has been suggested that the gap

behaves like (θ − π)1/2, which would imply a dependence of η on (θ − π) that it is not linear, as usually

assumed.
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product expansion (OPE)

φα(z)φβ(w) = (−)q(z − w)−1/2ǫαβ
(

1 + 1/2(z − w)2T (w) . . .
)

−(−)q(z − w)1/2(ta)
αβ (Ja(w) + 1/2(z − w)∂Ja(w) . . .) , (21)

where ǫ+− = −ǫ−+ = 1, (ta)
αβ are the generators of the algebra, and q takes the values

q = 0 for states that are created by an even number of spinons and q = 1 if the number

of spinons is odd. The OPE between the spinon operator and the SU(2) currents Ja(z)

is standard: Ja(z)φα(w) = (ta)α
βφ

β(w)/(z − w) + . . . . From these OPEs it follows that

Ja and φα are mutually local while φα and φβ are not. In fact taking φα(z) around φβ(w)

by sending z → z e2πi it produces a factor e2πi γφ with γφ = 1/2.

Therefore (Tr g)2 ≃ J̄aJa is local with respect to the spinons and this explains why

they are the fundamental excitations of Aπ, regardless of whether the perturbation is

marginally relevant or irrelevant. Since Tr g is proportional to (φ+φ̄− + φ−φ̄+), the OPE

(21) implies that this operator is instead non-local with respect to the spinons. Hence they

get confined as soon as the operator Tr g is added to Aπ, i.e. the perturbed model (20)

has no longer spin 1/2 excitations. As discussed in [22], the actual massive excitations

of the O(3) sigma model with θ–term consists of a triplet of particles and a singlet, the

former stable for all value of θ whereas the latter stable only in an interval of values of θ

near θ = π.
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