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Abstract

We prove an integral-representation result for limits of non-local quadratic forms
on H}(Q), with Q a bounded open subset of R extending the representation on
CP(Q) given by the Beurling-Deny formula in the theory of Dirichlet forms. We give
a counterexample showing that a corresponding representation may not hold if we
consider analogous functionals in VVO1 P(Q), withp#2and 1 <p<d.
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1 Introduction

In this paper we continue our investigation on functionals defined on Sobolev spaces in
which a non-local part, in the form of a double integral, is present beside a usual local part
depending on the gradient. In general this question can be formulated as the characteri-
zation of limits of functionals of the form

Fu(u) = fm fulu(@) — u(y))dui(z,y) + L gr(z, Vu(z)) d,

defined in some Sobolev space VVO1 P(Q) with p > 1. Different types of stability of such a
class can be studied: in [2] we have given a notion of convergence on measures py that
guarantees the separate stability of the integrals on © x Q and on 2, while in [3] we have
explored conditions under which a limit of a sequence of such functionals may still be of
this form, but the integrands of the limit are determined by the interaction between the
local and non-local terms. The theory of Dirichlet forms [6] gives the stability of such a
class under the only condition that fi and g be quadratic, with very mild conditions on
the measures py (see [9]).
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In this paper we analyze the properties of the I'-limits of these quadratic functionals,
and show that, rather surprisingly, the same stability property does not hold if we consider
only a slight variation of quadratic forms; namely, when all integrands are p-th powers
with p # 2. Previous examples of lack of stability were known in the case of relaxation
results for non-convex functionals F', where the local term is dropped (or, equivalently, if
and fr = f is not convex and gr = 0). In that case, the lower-semicontinuous envelope
in the weak LP topology of a double integral can be non-representable in the same form
[1, 7, 8]. Our counterexample shows that a similar issue arises even for sequences of convex
and equicoercive functionals in WO1 P(Q).

In this paper, we first show a result connected to the theory of Dirichlet forms. If we
consider quadratic forms defined in H}(Q) of the type

f () — uly) Pag(x, y) dady +f V() ? de, (1.1)
QxQ Q

with © a bounded open set in R? and aj, positive functions equibounded in L' (€ x Q) and
not concentrating on the boundary, we prove that the corresponding I'-limit, in the weak
topology of Hi(Q), can be written on functions u € CZ(€2) in the form

j () — u(y) Pz, y) + f V() ? de,
QxQ Q

where p is a positive bounded Radon measure (see Theorems 2.2 and 2.4, and Proposition
2.7). The main effort is spent in proving the boundedness of such a measure, which does not
seem to follow directly from the representation obtained from the Beurling-Deny formula
[6, Theorem 4.5.2].

We will show that if p # 2 (and 1 < p < d) this does not hold. More precisely, a
counterexample can be obtained as follows. Given zg € Q and a sequence ¢, of positive
numbers converging to 0, we set

CLk;(ZE y) _ ‘Bé‘k(xoﬂil lfyGng(.T())
’ 0 otherwise,

where B, (x) denotes the ball of centre  and radius 7. In this case the functionals
Fio(u) = JQ 0 |u(z) — u(y)[Pax(z,y) dedy + JQ |Vu(z)[P dz, (1.2)
X

defined for u € W,P(Q), have a I-limit, in the weak topology of Wy*(Q), that can be
directly expressed on that space as

J lu(z) — mp(u |pd:c+f |Vu(z)|P de, (1.3)



where my,(u) is the unique minimizer of ¢ — {, [u(x) — ¢|P dz. In the proof of this result
the inequality p < d is crucial, implying that a single point has zero p-capacity; this also
explains the fact that the I'-limit is independent of x.

If p # 2 we will show that there exist no continuous function f: R?> — R and no
non-negative bounded Radon measure g on €2 x € such that

f () — mp(w)|P d: = Lng(u(m),u(y))dm:c,y) (1.4)

for all u e CL(Q) (see Corollary 3.10).
Note that the representation of F' as above is not in contrast with the representability
as a double integral when p = 2. Indeed, in that case

ma(u) y) dy,
- a7

so that

|| 1) = ma(wP s - jru )" m—m(f u(y)dy)’

u\xr
2’Q| Q><Q| ( )

and p is just a multiple of the Lebesgue measure on ) x €.

The same observations lead to an example of failure of integral representability in the
theory of relaxation. This can be obtained by considering the functional defined on C}(£2)
by

Frofu) = | u@) = u(eo) do + | [Vu(e)?da.

where zg is a given point in €2. Then the lower-semicontinuous envelope with respect to
the weak topology of Wol’p(Q) is given by the same F as in (1.3), so that it cannot be
represented in an integral form. Note that the first term in F,(u) can be interpreted as
an integral on €2 x  with respect to the d-dimensional Hausdorff measure restricted to
Q x {xo}, which is the weak limit of the measures p = ay dxdy defined above.

The plan of the paper is as follows. Section 2 is dedicated to the quadratic case. We
first apply the Beurling-Deny formula to obtain a representation on C°(2) of the I'-limit
F of the functionals F in (1.1) involving two measures p and v on © x £ and €, respec-
tively (Theorem 2.2). We then analyze some properties of such measures deriving from
the estimates satisfied by F', proving that both measures are capacitary and finite (Theo-
rems 2.4 and 2.5). Using some additional lower-semicontinuity and truncation properties,
satisfied by the I'-limit, we then extend the integral representation to the whole of H&(Q)
(Corollary 2.8). Section 3 is devoted to the counterexample described above. We show



that the I'-limit of functionals (1.2) is given by (1.3). We then extend (1.4) to character-
istic functions u = 14 and show that, in this case, the right-hand and left-hand sides of
this equality depend only on the measure of A. A careful inspection of the form of this
dependence shows that they must be different if p # 2, concluding the counterexample
(Corollary 3.10).

2 The case p =2

Throughout the paper © is a connected bounded open subset of R¢, with d > 1, even
though some limit arguments become trivial if d = 1. Let a; € L*(Q x ) be non-negative
functions such that

lak] L1 @xq) < M for all k (2.1)

for some M > 0, and consider the functionals
Fulu)s= | Jula) = u(o)Pory) dady + | Vu(a)do (22)
X

defined for u € H}(2). Since they are equicoercive in the weak topology of H}(Q), we
can use the the sequential characterization of I'-limits in the weak topology given in [4,
Proposition 8.10].

Note that each Fj, satisfies the following truncation property: Fj(V(u)) < Fi(u) for
every 1-Lipschitz function ¥: R — R with ¥(0) = 0 and for every u € H}(2). Moreover,
(2.1) implies

Fi.(u) < M (oscu)? + f |Vu(x)|? d, (2.3)
Q
where oscqu := esssupqu — essinfqu denotes the oscillation of u on 2.

Proposition 2.1. Assume that Fy, T'-converges in the weak topology of H} () to a func-
tional F'. Then F satisfies the following properties:
(a) the domain of F, D(F) := {u€ H}(Q) : F(u) < +o0}, is a linear space containing
HY(Q) n L*(9);
(b) F is a quadratic form; that is, there exists a bilinear form B: D(F) x D(F) — R
such that F(u) = B(u,u) for every w e D(F);

(c) the space D(F) endowed with the norm || - |p defined as

1/2

lullr = (lulZ2q) + F(w) (2.4)

is a Hilbert space;

(d) we have F(V(u)) < F(u) for every 1-Lipschitz function ¥: R — R with ¥(0) = 0
and for every u € H} (Q);

(e) the space CL () is dense in D(F) with respect to the norm | - ||r.



Proof. (a) If u € HE(Q) n L®(£2) then (2.3) gives

F(u) < lim inf Fi (u) < (20l = (0y) "M + | Vul 22 .0y (2.5)
(b) follows from general properties of I'-convergence (see [4, Theorem 11.10]); (c) following
from the lower semicontinuity of F' by a standard argument; (d) can be obtained from the
truncation property of Fj, using the definition of I'-limit.

As for (e), we first prove that H}(€2) n L®(€) is contained in the closure of C* () with
respect to the norm | - |r. Indeed, for every u € HZ(Q) n L®(Q) there exist u, € CX(Q)
converging to u in Hg(€2) and with [ug =) < |ullpe(q). From this and (2.5) we deduce
that |ug|F is equibounded, which implies that uy — u weakly in the Hilbert space D(F),
showing the desired inclusion. It remain to prove that H}(Q) n L®(Q) is dense in D(F).
To that end, if u € D(F') we can consider u,, = ¥,,(u), where W,,,(t) = (m A t) v (—m) is
a truncation operator. Then u,, € H}(2) N L®(Q), wy, — u in HY(Q), and F(uy,) < F(u)
by (d). This again implies that |u,,|r is equibounded, so that u,, weakly converges to u
in D(F'), concluding the proof. O

Theorem 2.2. Assume that Fy, T-converges in the weak topology of H} () to a functional
F. Then there exist two positive Radon measures p and v on Q x Q and ), respectively,
such that

(a) for ue CF(Q)

= ulxr) —u 2 X U.’L‘ZVIII uwzx' .
F(u)—fm| (2) — uly) Pdu( ,y>+fﬂ| () 2d >+fﬂ|v @Pdr;  (26)

(b) w is symmetric; i.e., (A x B) = u(B x A) for every pair of Borel sets A and B
contained in §);
(c) setting A := {(z,z) : x € R}, we have

W(( % Q) A A) = 0. (2.7)

Proof. From the previous proposition it follows that the bilinear form B defined therein is
a Dirichlet form (see [6]), and that C°(Q) is a core for B. Consequently by the Beurling-
Deny Theorem ([6, Theorem 2.2.2]), we have the decomposition

F(u) = F™(u) + F'(u) + F¢(u) for every u € C¥(Q),

where F* is a local term, F" is a non-local term, and F¢ is a local term depending only
on the derivatives. More precisely, there exist a symmetric matrix of Radon measures 1,



and two positive Radon measures p and v such that

F™ () = fmrum—u( ) Pdu(z, y), f u(@)Pdv(z),  (28)
o oulz) du(z) |
F<u>—mZ_1 J, e ey o (2.9)

for every u € CL(2). Note that it is not restrictive to suppose that p is symmetric and
(2.7) holds since |u(x) — u(y)|> = 0 on A.

We now show that in our case F(u) = f |Vu(z)|? dz. Note that
Q

JIVU )|? dx < F(u) < M (oscqu)? f]Vu )|? dx (2.10)

for every u € CF(Q), using the lower semicontinuity of the first integral for the first
inequality and (2.3) for the second one.
Given w e C*(Q2) and & € RY, let ¢ and ¢ be defined by

o(r) =w(x)cos(z-§) and Y(x) = w(z)sin(z - §).

By a direct computation we have

Fo(p) + F*(1) .S f )&y (),

1,j=1
fﬂ V() 2 di + fg V()2 d = fg V() do + fQ WP () €,

so that

’ Z J )& dpij () — JQWQ(x)ﬁ\Zd:U‘

2,7=1

N

— [ we@P da| + [Fw) - [ 1Ve@P s+ [F) - [ Ve da
Q Q Q
+F%) + FH() + F'(w) + F" () + F" () + F" (w)
Using (2.10) we get

| Z f )&y dpy () = L w? ()¢ da

i,j=1
< 12M W] ) + 3F (W) + F"() + F"(4) + F™ (). (2.11)
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Let K = suppw. We observe that
F'(p) = J jw(a) cos(x - §) — wly) cos(y - €) *dpla, y)
KxK

H] ) costa O Pduto) + [ () cos(y - OPdute.)
K x (Q\K) (NK)x K

N

Yol x )+ [ fo@Pduteg) + | Je)Pdute
K x(Q\K) (NK)x K

N

ol ol x 1)+ [ (o) — (o) Pduta.)
QxO

N

Mwﬂ@wMXwan+mem%%

where in the last inequality we again use (2.10). Using the analogous estimate for F™ (1)),
from (2.10) and (2.11) we get

Z J glg_]d;ul]( ) J;) w2($)|§|2daj‘

i,7=1

< w7 ) (81K x K) +20M) + 5[9 |Vw(z)|? dz.

Applying this estimate with & replaced by A{ we obtain

Z f x)&i&jdpij(x) — fﬂwz(x)\§|2dw

i,j=1

2 2
<Axwmm@mxxm+me5memd@.

Letting A — +00 we then have

EJ x)&i€jdpij () = fﬂwz(sc)]f\Qd:c.

3,j=1

By polarization we have
Z f x)&midpgj(x) = f w2(1‘)§ ‘ndx for all £,n€e R,
i,j=1 Q

Taking &,n € {e1,...,eq} and using the arbitrariness of w, we obtain that j;; = 0 for i # j
and pi; = L4, so that Fé(u) = §o |Vu(z)[* dz. Using this we also have

F™(u) + F*(u) < M (oscq(u))? (2.12)
for all u e CL(Q). O



The following example shows that a non-trivial measure measure v may indeed appear
in the limit.

Example 2.3. Let d =2 and Q = (0,1) x (0,1), with ag(z,y) = ax(z) + ax(y), where

@) ko ifze Ry :=(0,1) x (0, 1),
ap(x) =
k 0 otherwise.

Then (2.1) is satisfied with M = 2. We now show that the corresponding F} converge to
the functional given by

F(u) = QJ lu(x)|? dx + j \Vu(z)|? de,
Q Q
which corresponds to p = 0 and v = 2£¢.

In order to prove the liminf inequality we fix uj, converging weakly to u in H{ (). We
have

Jﬂxn lug () — up(y)|2ar(z, y) dedy
= 2k ij ’wg(x)|2 dx — 4k JR;C u(z) dx L up(y) dy + 2 L |uk(y)\2 dy.  (2.13)

Moreover, using a Poincaré-inequality argument in Ry, we obtain

1
kj lug (z)|? dz < f |Vug(z)|* de. (2.14)
Rk k Rk
This gives
lim & lug(z)|? dz = 0 (2.15)
k—+00 Ry,

since the right-hand side in (2.14) converges to 0. By Hoélder’s inequality we also obtain

lim k:f |ug(z)| dx = 0.
Ry

k—+00

These limits imply that, by (2.13),

im [ fun(e) — wly)Pag (e, y) dedy = 2 f fu(z)[? de.
k—+0 Joxn Q

By the lower semicontinuity of the gradient term this shows that llim inf Fy(ug) = F(u).
—+00
On the other hand, (2.13) with u; = u shows that klim Fy(u) = F(u), completing the
—+a0

proof of the I'-convergence of Fj, to F'.



We now analyze the properties of the measures p and v given in Theorem 2.2 in order
to extend the representation result to the whole H} ().

Theorem 2.4. Let F': CF(Q) — [0, +00) be such that there exist exist two positive Radon
measures (1 and v on Qx 8 and Q, respectively, that satisfy (a), (b), and (c) of Theorem 2.2.
Suppose in addition that there exists M > 0 such that

F(u) < M (oscqu)? + JQ |Vu(z)|? de (2.16)

for allue CL(Q). Then
(a) the measures p and v are uniquely determined;
(b) (2 x Q) < +0 and v(Q) < +oo.

Proof. We begin by proving that v is a finite measure. From (2.16) and (2.6) we first
obtain

f lu(x)|2dv(z) < M (oscqu)? for all u e CP ().
Q
Approximating the constant 1 by an increasing sequence of non-negative functions wuy €

C>(€2) we obtain that v(Q) < M.

We now complete the proof of claim (b), showing that the measure p is finite. We
preliminarily note that from (2.16) and (2.6) we also obtain

J lu(x) — u(y)Pdu(z, y) < M (oscqu)? for all u e CP(Q). (2.17)
QxQ
Since the proof is rather complex we first consider the case d = 1, hoping it may clarify
the arguments used. For given n > 0 we let
Ay = {(z,y) e R xR : [ — y| < 7}, (2.18)

and cover (2 x Q)\A, ‘in the average’ by a family of ‘checkerboard-type’ sets depend-
ing on two parameters o and 3, showing that the covering has some average properties
independent of 7.

With given «, 8 € R, with 8 > 0, we define

Aag= | la+hB,a+ (h+1)8), (2.19)
h even
and
Eap= |J (la+hBa+(h+1)8) x [a+kB,a+ (k+1)8)). (2.20)
h+k odd

Note that E,4x33 = Eq g for all k€ Z and

Eop = (a,a) + Eop; (2.21)



moreover, we have
(Qx Q) N Eyp=((2n Aap) x (NAa,p)) U (NAap) x (21 Aap)). (2.22)

We claim that
p(2x Q)N Eyp) < M, (2.23)

where M is defined in (2.16). To prove the claim we take a sequence uy € C°(§2) such that
0 <ug <1andug(z) - 14, 4(x) for all x € Q. We then have

Jim Jug (@) — ug(y)Pdp(z,y) = p((Q2 0 Aa ) x (NAap)).  (2.24)
0 (QmAa,ﬁ)X(Q\Aa,ﬁ)

If this latter measure is finite this limit is obtained by using the Dominated Convergence
Theorem; otherwise, it follows by applying Fatou’s Lemma. From (2.17), (2.24), and the
analogous limit for p((2\Aqg) x (2 N Aqg)), we obtain the claim thanks to (2.22).

The next argument is, given 7 > 0, to determine £ > 0 such that, setting D. = {(«, ) :
0<a<pf, e<pB <2}, we have

JDE 1g, 5(7,y)dadfB > <% — 17) | D.| (2.25)

for every (z,y) € (2 x Q)\A,,, where A, us defined in (2.18). Once (2.25) is proved we
obtain

(% - n) |De|p((2 x Q\A,) < LQJ 1p. s (2, y)dadBdp(z, y)

| 1 dute pdads
e JOAXQ
|D€|/L(Ea,5) < |D5|M

N

by (2.23). Dividing by |D.| we obtain that

1
(5= n) u@x Q\a,) < M.
Taking into account (2.7) we obtain

w(Q x Q) <2M (2.26)

by the arbitrariness of 7, concluding the proof of the boundeness of u.
It remains to prove (2.25). By Fubini’s Theorem we have

2e
L 15, , (e, y)dadf = f £({a € [0,5) : (2,y) € Fag})dB.
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We now claim that £({a € [0, 8) : (z,y) € Eq }) depends on z := y — x and that, setting

1:(8) = L {a € [0,8) : (z,y) € Eas}),

we have
12(8) = |z — 2mg(2) B,

where mg(z) € Z is the unique integer such that
(2mp(z) — 1) < z < (2mg(z) + 1)6.

We first observe that, by the periodicity of E, g, the set {o € R : (z,y) € E, 3} is a
periodic subset of R of period 3. Moreover, using (2.21), we have

{aeR: (z,y) € Eap} ={aeR:(0,2) € Eyp} + ap(x),
with ag(z) := @ — B| 5], where [-| denotes the integer part; hence,

L'({ae[0,8): (2,y) € Bag}) = L ({a € [0,8) : (0,2) € Eag})

by the periodicity of the set, which proves the fact that v, indeed depends only on z.

: >
p X
Figure 1: geometrical interpretation of 7.; the grey zone represents Eq g.

We now observe that, using the periodicity of Ey g, we can write

7:(8) = L' ({a € [0,8) : (0,2) € (@,a) + Egg}) = L1 ({a € [0,8) : (0,2) + (o, @) € Eo g}),

so that we have v,(8) = 0 when |z| = mp for m even and 7,(8) = S for |z| = pm for m
odd. Otherwise, the function ~, is the piecewise-affine interpolation determined by these
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conditions on SZ. In Fig. 1 we give a pictorial representation of the value ~,(3), given
by the length of the projection on the z-coordinate axis of the intersection of the line
{(0,2) + (o, @) : @ € R} with Ey g n ([0, 3) x R). In the figure we have pictured the cases
of a generic z and of the two possibilities, z even or odd, when z € Z (dashed lines).

In terms of ., (2.25) is equivalent to

1

[ as> (5 - n)i.. 227)

Note that |D.| = %62, but in most of the computations we do not need this explicit value.

A
Y

2 12 I 2 B
2m+1 2m  2m-1 2m-2

Figure 2: a part of the graph of ~,.

In order to prove (2.27) note that

=] =]
| R CER R (2:29)

for every m € N with m > 2 (this is just a comparison between the areas of the two triangles
in Fig. 2). We define h = h(|z|,€) and k = k(|z], ) setting
2]
2m 2m

hzmax{meNzeéﬂ}, k=min{meN:—<2€},

and observe that k& < h. From (2.28), summing on the set of integer m with k <m < h
we deduce that

Fevz(ﬂ)dﬁ > [ x6)as

£ 1=l

% 2e
> [T onas = [ 6 -@as - 13




so that

2e
1 5 1 27|
a8 > S|D.| ~ |2l o5 = DI (5 — =5 ): 2.29
|| -9 = 121~ el = 1Dl (5 - gt (229)
Note that % < |47€|, so that % < % By choosing € < 3%172 we then have 32111 < n for all

z with |z| = 7, and estimate (2.27) holds.
Ifd>1,forallie{l,...,d} and a, f € R, with 5 > 0, we consider the set

E(Z)c,ﬁ = {(xvy) € Rd X Rd : (:’U’Layl) € Ea,ﬂ})
where E, g is defined in (2.20). Correspondingly, we define
Ap = {(@,y) eRT < RY: (i, y3) € Aa},
where A, g is defined in (2.19). As in (2.22) we get
(Qx Q) By = (20 AL ) x (NAG5) U (NAG5) x (20 4G ).
Repeating the steps in the proof in the case d = 1 we obtain, as in (2.25),
1 .
j 1 (z,y)dadf > (f —77)|D€| for all i € {1,...,d},
D F 2
and hence that p((Q x Q)\A?Y) < 2M, where A? = {(2,7) € R x R? : x; = y;}. Since
A =L, A% and p((Q x Q) A A) = 0, we deduce that
n(2 x Q) < 2dM,

which concludes the proof of (b).

In order to prove (a), we first note that for all disjoint open subsets A and B of €,
thanks to (2.6) and the symmetry of ;1 we have

2MAx@xAn+ym)zﬁm1(Fww—ﬁﬁkum%m)

(B x (D\B) +v(B) = lim_(Plon) = | [Vor(a)?de).
2u((A U B) x (Q\(A U B))) + v(A U B)

— I _ 2
- kEToo <F(uk + vg) fﬂ |Vug(z) + Vg ()| dx),

where ug, v, are sequences in CP(Q) with 0 < ux < 14 and 0 < v, < 1p, such that
ug(z) — 1a(z) and vg(z) — 1p(z) for all z € Q. Summing up the first two equations
above and subtracting the third one we have

pAxB) = o (u(Ax (Q\A) + (B x (2B)) ~ (A B) x (Q\(Au B)))
— 9p(A,B),
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where

Bp(A, B) = lkEToo (F(ur) + Flog) — Fu, + ).

This shows that if uq and pg are symmetric bounded Borel measures and satisfy (2.6) then
11(A x B) = ps(A x B) (2.30)

for all disjoint open subsets A and B of 2. This property can be extended first to disjoint
compact subsets of 2 and then to disjoint Borel subsets of 2.
To extend this equality to arbitrary Borel subsets of €2 we fix n > 0 and write

my Ny
A=J4, B=JB,
i=1 j=1

where A; and Bj are Borel partitions of A and B, respectively, with diam(A4;) < 2 and
diam(B;) < % for all 4,5. Setting D, = {(i,j) : A n B; # &} and observing that
A x B =], (Ai x B;j) and that U(i,j)eDn (A; x Bj) € Ay, by (2.30) we obtain that

|1 (A x B) — p2(A x B)| = ‘Ml( lJ (4 x Bj)) - Mz( lJ (4ix Bj))’
(4,)€Dy i,7)€Dy,
< (< Q) n Ag) + pp((Q2 x Q) N Ay).

Therefore, if 111 and po also satisfy (2.7), then, by letting 7 — 0 we obtain that p;(Ax B) =
p2(A x B) for all pairs of Borel sets, and hence that py; = p2. Finally, by (2.6) we deduce
that for every u € H}(Q) the integral {, |u(z)|*dv(z) is uniquely determined by F, which
gives the uniqueness of such a v, and concludes the proof of (a). O

In the following theorem we use the classical notion of capacity, and @(x) denotes the
precise representative of a function u € Hg (), which is defined up to sets of zero capacity
(see [5, Sections 4.7 and 4.8]). A similar result can be proved using the intrinsic capacity
of the Dirichlet form F and the corresponding precise representatives (see [6, Theorem
4.5.2]).

Theorem 2.5. Let F': H}(Q) — [0, +00) and let u and v be two bounded positive Radon
measures on Q x Q and 2, respectively, that satisfy (a), (b), and (¢) of Theorem 2.2.
Suppose also that F be lower semicontinuous in the weak topology of H}()) and that there
exists M > 0 such that (2.16) holds for all ue CL(Y). Then

(a) if B < Q is a Borel set with zero capacity, then u(B x Q) =v(B) = 0;

(b) for every u e HY(Q) n LP(Q)

F(u)—JQXQ]ﬂ(:c) 4(y)2du(e, y) + f]u ) 2du(a J]Vu Vde  (231)

(c) if, in addition, F(¥,(u)) < F(u) for all w € H}(Q) and m € N, where ¥,,(t) =
(m A t) v (—m), then (2.31) holds for every u e H(S).
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Proof. We observe that, by the strong continuity of u — {, |Vu(z)[* dz,

u— lu(x) — u(y)Pdu(z, y) + J |u(x)|?dv(z) is lower semicontinuous
QxQ Q

on C¥(Q) with respect to the strong topology of HE(Q).
Let K be a compact subset of 2 with zero capacity. We now prove that

WK x (N\K))=0 and v(K)=0.
Given n > 0 let U be an open set such that K < U < Q and

W(U\E) x Q) < and  v(U\K) <1,

(2.32)

(2.33)

(2.34)

and let w € CF(§2) be such that 0 < w < 1 on the whole 2, w = 1 in a neighbourhood

1

of K, and w < 7 on Q\U. Since K has zero capacity there exist a sequence uy € C ()

4

converging to w strongly in H{ (), such that 0 < uy < 1 on the whole Q, u, = 0 on K

and ux = w on Q\U. Then we have

[ unt) = weto)Paute ) + | Jueta) (o)
QxQ Q

< 2 f () Pdp(e, y) + f (@) — w(y)Pdu(z, y)
Kx(Q\U) (Q\U) x (D)

+u((U\K) x (U\K)) + 2u((U\K) x (Q\U)) +f jw(@)*dv(z) + v(U\K)

QU
1
< gul x @)+ | w(z) — w(y)Pdul,v)
(Q\U)x (V)
—&-J lw(z)|*dv(z) + 3n,
U
while

w(z) — w(y)Pdp(z, y) + f jw(z)*dv(z)
QxQ Q

. f 11— w(y)Pdulz, y) + j (@) — w(y) Pdu(z, y)
Kx(Q\U) ()< (Q\U)

+v(K) +J lw(z) [2dv(z).

QU

Hence, noting that 1 —w(y) > 3 if y € Q\U, from the convergence of uj, to u and (2.32)

we obtain

1

ZM(K x () + v(K) < p(K x (Q\U)) + 3n.

oo

15



Taking into account that pu(K x (U\K)) < n thanks to (2.34) and the symmetry of u we
obtain

P x (Q\K)) + v(K) < 4,

and (2.33) is proved by the arbitrariness of 7.
We now claim that

(K x K) =0, (2.35)

Given 7 > 0 we can find a finite number of compact sets K; such that K = [, K; and
diamK; < g Since

KXKCU(KZ'XKJ')I U (K x Kj) v U (K; x Kj),
4,J (4.5)eD (4.5)¢D

where D = {(i,7) : K; n K; # &}, we have

i < Ky <p( | < K))+ Y ulK x K;).
(i,5)€D (4,)¢D

Since K; < Q\K; if (i,7) ¢ D, by (2.33) applied to K; the terms in the last sum are all
zero. On the other hand (J; yep(Ki x Kj) < Ay, where Ay is defined in (2.18), so that
p(K x K) < p((Q2 x Q) nAy). Since p((€2 x Q) nA) = 0 and p is finite we obtain (2.35)
by letting n — 0.

Finally, (2.33) and (2.35) give that u(K x Q) = v(K) = 0 for any K compact set with
zero capacity. Claim (a) is then obtain by approximation of B with compact sets contained
in B.

In order to prove claim (b), by proceeding as in the proof of Proposition 2.1(e) for all
u € HY(Q) n L*(Q) we have a sequence u; € CX () converging strongly to u in HE (1),
such that |ugllr=(q) < [ulro@) and ug converge weakly to u with respect to the Hilbert
structure induced by the norm defined in (2.4). By Mazur’s theorem we obtain a new
sequence vy, € C(Q) converging strongly to u in Hj(Q), such that |lu| () < [uf ze(q)
and vy, converge strongly to u both in H}(Q) and with respect to the Hilbert structure
induced by the norm defined in (2.4). In particular F(vy) — F(u) and, upon passing to
a subsequence, vy — U quasi-everywhere (in the sense of capacity). Together with the
uniform bound, this implies that

Jdm [ o) = o) Pdute) = | i) = 20 Pdutz)

QxN
lim j (@) 2dv(a) = [ Ju(e) Pdv(a),
k—+00 Q Q
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and claim (b) follows.
In order to prove (c), let G: H}(Q) — [0, +o0] be defined by the right-hand side in
(2.31), and let u € H}(Q). Let uy, = ®,,(u) and note that lililoo G(um) = G(u) by the

Monotone Convergence . Since F'(u,) = G(u,,) to conclude the proof it is enough to note
that liIE F(uy,) = F(u), which follows from the hypothesis on truncations and the lower
m——+00

semicontinuity of F. O

Remark 2.6. Note that equality (2.31) may not hold on the whole H{ (Q) if the additional
assumption in (c) is dropped. For instance, if G is defined by the right-hand side in (2.31),
and F is defined as equal to G except on a single ug € H(Q)\L®(Q), where we set
F(up) = 0, then F is lower semicontinuous, F' and G are equal on H{(Q) n L®(Q), but
equality does not hold in the whole H}(2).

Proposition 2.7. In addition to the hypotheses of Theorem 2.2, suppose that ai satisfies
the following condition: for every e > 0 there exists a compact set K. < Q) such that

J ak(z,y) dedy < e for every k € N. (2.36)
(AxQ)\(KexKe)

Then the measure v in Theorem 2.2 is the null measure.

Proof. Let u e CFX(£2) such that 0 < w < 1 and u = 1 on K.. Then, by using u as test
function in the I'-limit we have

Fu) < liminfj
k=40 JxQ)\(K:x K:)

< e+ f |Vu(z)|* de.
Q

() — u(y)|? dedy + JQ V()2 dz

Since F(u) = F™(u) + F*(u) + §, |Vu(z)|? dz we conclude that F*(u) < ¢ for all such u.
We now fix a compact K in Q and for each € > 0 take u. € C(Q) with 0 < u. <1
and u. = 1 on K u K.. By the estimate above we have

W(K) < L e () P(z) = FL(u.) < e

By the arbitrariness of £ we obtain that v(K) = 0 for all K compact of €2, which proves
the claim. O

The following corollary improves the conclusions of Theorem 2.2 in light of Theorems
2.4 and 2.5 and of Proposition 2.7.
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Corollary 2.8. Let Fy, be given by (2.2), with ay satisfying (2.1). Suppose that Fy I'-
converges to F with respect to the weak topology in H&(Q) Then there exist two positive
finite Radon measures p and v on ) x Q0 and €2, respectively, such that

(a) p is symmetric and p((Q x Q)\A) = 0;

(b) u(B x Q) =v(B) =0 for all Borel sets B < Quith zero capacity;

(c) for every u e H ()

F(u) =J U(x) — u(y)Pdu(z, y) J ()| 2dv(x J \Vu(z)|* d; (2.37)
QxQ
If, in addition, ay satisfies property (2.36), then v = 0.

Proof. This corollary is an immediate consequence of Theorems 2.2, 2.4, and 2.5, noting
that the hypothesis of Theorem 2.5(c) is satisfied thanks Proposition 2.1(d). The last
statement follows from Proposition 2.7. O

Remark 2.9 (extension to general double integrals). The conclusions of Corollary 2.8
remain valid if we consider the functionals defined by

Fw) = | (o) = ) Pdus o) + | |Vula) P (2.33)
QxQ Q
for every u € HZ(Q), with condition (2.1) substituted by
pi (2 x Q) < M for every k € N, (2.39)

and (2.36) substituted by

pi (2 x Q\(K: x K;)) < ¢ for every k € N. (2.40)

3 The counterexample

We fix p € (1,+0). For simplicity of notation we suppose 0 € €2, and let B, be the ball
of centre 0 and radius r. We fix a sequence of positive numbers ¢ converging to 0, and
define the functionals Fj: VVO1 P(Q) — R by setting

JJ ) —u(y ]pdydx+J|Vu )P dx (3.1)
’B5k| Be,,

k u
for every u e Wy (Q).
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Definition 3.1. For all u e LP(Q)) we define my(u) as the unique minimum point of

t|—>f ulz) — P da.
Q

Lemma 3.2. The map my: LP(2) — R is continuous.

Proof. Let uj, — u in LP(§2). Then the sequence my(uy) is bounded since

[myp(ur)| < Jug — mp(ur) o) + el ey < 2lukl e

We can suppose, upon subsequences, that m,(uy) — to. With fixed ¢t € R, we can pass to
the limit in the inequalities

f ]uk(x)—mp(ukﬂpdxéf g () — ¢ d,
Q Q

and obtain that

f\u(x)—t0|pdx<J lu(z) — HP da,
Q Q

which concludes the proof. ]

Theorem 3.3. Ifp € (1,d] then the T'-limit of Fy, with respect to the weak W&’p—convergence
1s the functional F defined by

f lu(z) — my(u) P do +J |Vu(x)|P dx (3.2)
for every u € W&’p(Q).

Proof. Let up — u weakly in Wol’p(Q). Then also up — u strongly in LP(£2). Hence, using
Jensen’s inequality, the minimality of m,(uy), and applying Lemma 3.2, we get

1
lim inf JJ ug(x) — ug(y)|P dy dz
minf 5 |, ]t~ w)
1 P
> liminf dy| d
mint | outo) = 1 | et o
> liminf j () — my(ug) Pdz > J fu(z) — mp(u) Pd.

Since the term i, |[Vu(z)[P dz is lower semicontinuous, this proves the liminf inequality.
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To prove the upper bound, we first construct a recovery sequence if u = 0 in a neigh-
bourhood of 0. In this case, let v, be the p-capacitary potential of B., with respect to 2;
that is, the minimizer of

min{f V()P d :ve WyP(),v =1 on Bak}.
Q

Since p < d it is known that v, — 0 in W P(Q) (see e.g. [5, Section 4.7]). We then set
up = u + my(u)vg, and obtain

lim sup Fy(ug) = lim sup(f lug(z) — myp(u)|P dz + f |Vug ()P da;) = F(u)
k—+w k—+o0 NJQ Q

Since F' is continuous in WO1 P(Q) and the set of function CZ () which are 0 in a neigh-

bourhood of 0 is dense in VVO1 P(Q1), the claim follows. O]

Remark 3.4 (I-limit in W1P(Q)). If Q is a bounded open set with Lipschitz boundary,
then the functionals defined by (3.1) for u € W1P(Q) I-converge with respect to the LP(Q)
convergence to the functional defined by (3.2) for u € W1?(Q). Indeed, in the proof we only
use the boundary condition to deduce the equi-coerciveness of the functionals, a property
that is also assured by the regularity of 0€2.

We now want to show that F' cannot be represented in the form
Pl = [ flato) ulp)inte) + | atu@)ivte) + [ [Vu)rda

for u e CX(€), where f: R?> - R and g: R — R are continuous functions, while ;1 and v
are two positive bounded Radon measures on € x  and 2, respectively. To that end we
examine the two integrals with respect to u and v separately from the third one.

Proposition 3.5. Let f: R> > R and g: R — R be continuous functions, and let p and v
be two positive bounded Radon measures on 2 x ) and ), respectively. Suppose that

j () — () P dr = mew(x),u(y))du(x,y) N fﬂgm(m))du(m) (3.3)

holds for u € CF(R), then the same equality holds also for u = 14, for all A open of Q;
that is,

jru — my(L)|P di = fmfm(x),1A<y>>du<x,y>+ fggm(m))dv(m). (3.4)
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Proof. Preliminarily, note that, taking v = 0 in (3.3), we obtain
0= £(0,0) u(€2 x 2) + g(0) v(£2).
It is then not restrictive to assume that

f(0,0) = g(O) =0, (3'5)

up to substituting f(s,t) with f(s,t) — f(0,0) and g(s) with g(s) — g(0).

Let now A be an open set relatively compact in €2, and let uy be a sequence in C°(2)
converging pointwise to 14 and such that 0 < ug(z) < 14(z). By the convergence of wuy
to 14 in LP(Q2) and Lemma 3.2 we have the convergence of the left-hand term in (3.3) to
the corresponding term in (3.4). As for the right-hand side of (3.3), it suffices to apply the
Dominated Convergence Theorem. O

Remark 3.6 (computation of m,(u) for characteristic functions). For any measurable set
A the constant m,(1,4) is obtained by minimizing

L [1a(z) — 2P do = |A[[1 —t]” + (|2 — [A])[¢]".

The minimal ¢ € [0, 1] is determined by (|Q| — |A|)tP~! = |A|(1 — t)P~!; that is, we have

| AV (@=1)
(12] - [ADVE=D + A/ -1

1—t (|Q| - \A|)1/(p*1)

; a and  my(ly) =

Remark 3.7. From the previous remark we have that

flm —mp(La) P di = B, (| A]), (3.6)
Q
where
5 (5) 1 202 = 970D + (0 = )rl0) s(12] - s) .
pA=/ (1] — 3)1/(17—1) + 31/(20—1))1) (1] — 3)1/(p—1) + 31/(17—1))19—1' )

The following proposition relates the function ®, defined in (3.7) and the measure p.

Proposition 3.8. Under the assumptions of Proposition 3.5 for all A, B open sets in §2
with A n B = & we have

Dp(|A]) + Pp(|Bl) = Pp(|Al + |B) = Cp(u(A x B) + u(B x A)), (3.8)
where Cy = f(1,0) + f(0,1) — f(1,1).
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Proof. From (3.4) and (3.6) we have

Dp(|A]) = F(1, (A x A) + f(1,0)u(A x (2\A))
+£(0, u((N\A) x A) + g(1)r(A), (3.9)
and analogous formulas for ®,(|B|) and ®,(|A|+|B|) = ®,(|A v B|), from which the claim
follows. O

Proposition 3.9. If there exists a bounded Radon measure jn on £ x Q such that (3.8)
holds, then p = 2.

Proof. Take Aj, Ay, and B disjoint open subsets of Q, and let s; = |A;|, so = |A2|, and
t = |B|. From (3.8) we then have
Dy (s1 + 52) + Pp(t) — Pp(s1 + s2 +1) = Cp(p((A1 U A2) x B) + pu(B x (A1 U A)))
= Cp(u(Ar x B) + p(B x A1) + p(Az x B) + p(B x Az))
= (I)p<81) + (I)p(t) — <I>p(31 + t) + @Z)(SQ) + (pp(t) - (bp(SQ + t),
or, equivalently, that for every fixed ¢ € (0,]€2|) the function
9(s) = p(s) + p(t) — Pp(s + )

is additive on (0, |2| —¢), which implies that there exists a constant ¢; such that g(s) = ¢s.
In particular, taking into account the differentiability of ®,, we have

P (s) — Py(s+1t) = g"(s) = 0 for all s, € (0,]Q]) such that s + ¢ < [€].

This implies that <I>g is constant, so that it equals a second-order polynomial P.
It is now convenient to write ®,(s) = s(|Q| — s)(hy(s))' 7P, where

hy(s) = sV/P~1 4 (|Q] — 5)V/ D).

Since hy(s) # 0 we have P(s) = 0 if and only if s = 0 or s = |Q|, so that P(s) = ks(|Q2] —s)
for some constant . This implies that hy(s) = & for every s € (0,|€2|) and then also for
s =0 and s = |Q| by continuity. In particular, this gives

?

VP = hy(0) = hp(Kz)') - 2(2”)1/@_1)

which holds only if p = 2. d

Combining the previous results, we are now in a position to prove that F' cannot be
represented in an integral form when 1 < p < d and p # 2.
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Corollary 3.10. Let 1 < p < d and let F' be the I'-limit, with respect to the weak W(}’p—
convergence, of the sequence Fy defined by (3.1). Suppose that there exist two real valued
continuous functions f and g, defined on R? and R, and two positive bounded Radon
measures on ) x Q and €2, respectively, such that

F) = | fu@am)dute.s) + | ow@)iva) « | Vu@pa @10)
for every uw e CX (). Then p = 2 and in this case we have p = ﬁﬁm and v = 0, while
f(s,t) = |s —t|? for every s,t € R.

Proof. By Theorem 3.3 the functional F' is given by (3.2). By (3.10) this implies that
the assumptions of Proposition 3.5 are satisfied, and by Proposition 3.8 we can apply

Proposition 3.9, which gives p = 2. The explicit form of of f, u, and v follows from (1.5)
and (3.2). O
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