Grava, TamaraKapaev, AndreiKlein, Christian2014-01-152014-01-152014-01-15https://openscience.sissa.it/handle/1963/7244For equation P$_I^2$, the second member in the P$_I$ hierarchy, we prove existence of various degenerate solutions depending on the complex parameter $t$ and evaluate the asymptotics in the complex $x$ plane for $|x|\to\infty$ and $t=o(x^{2/3})$. Using this result, we identify the most degenerate solutions $u^{(m)}(x,t)$, $\hat u^{(m)}(x,t)$, $m=0,\dots,6$, called {\em tritronqu\'ee}, describe the quasi-linear Stokes phenomenon and find the large $n$ asymptotics of the coefficients in a formal expansion of these solutions. We supplement our findings by a numerical study of the tritronqu\'ee solutions.enOn the tritronquée solutions of P$_I^2$PreprintMAT/07 FISICA MATEMATICA