Arici, FrancescaKaad, JensLandi, Giovanni2015-04-032015-04-032014-03-03https://openscience.sissa.it/handle/1963/34461The preprint is composed of 30 pages and recorded in PDF format. Was published in arXivA self Morita equivalence over an algebra B, given by a B-bimodule E, is thought of as a line bundle over B. The corresponding Pimsner algebra O_E is then the total space algebra of a noncommutative principal circle bundle over B. A natural Gysin-like sequence relates the KK-theories of O_E and of B. Interesting examples come from O_E a quantum lens space over B a quantum weighted projective line (with arbitrary weights). The KK-theory of these spaces is explicitly computed and natural generators are exhibited.Pimsner algebras and Gysin sequences from principal circle actionsPreprintMAT/071409.5335