Zanini, Chiara2006-07-262011-09-072006-07-262011-09-072006-07-26Discrete Contin. Dyn. Syst. 18 (2007) 657-675https://openscience.sissa.it/handle/1963/1847In this paper we give a description of the asymptotic behavior, as $\epsilon\to 0$, of the $\epsilon$-gradient flow in the finite dimensional case. Under very general assumptions we prove that it converges to an evolution obtained by connecting some smooth branches of solutions to the equilibrium equation (slow dynamics) through some heteroclinic solutions of the gradient flow (fast dynamics).241737 bytesapplication/pdfen-USSingular perturbations of finite dimensional gradient flowsPreprint