Γ-CONVERGENCE AND STOCHASTIC HOMOGENIZATION FOR FUNCTIONALS IN THE A-FREE SETTING
Loading...
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
We obtain a compactness result for Γ-convergence of integral functionals defined on A-free
vector fields. This is used to study homogenization problems for these functionals without periodicity
assumptions. More precisely, we prove that the homogenized integrand can be obtained by taking limits
of minimum values of suitable minimization problems on large cubes, when the side length of these cubes
tends to +∞, assuming that these limit values do not depend on the center of the cube. Under the
usual stochastic periodicity assumptions, this result is then used to solve the stochastic homogenization
problem by means of the subadditive ergodic theorem.
Description
Prepront number: SISSA 12/2025/MATE