Mean-field quantum dynamics for a mixture of Bose-Einstein condensates

dc.contributor.areaMathematicsen_US
dc.contributor.authorMichelangeli, Alessandro
dc.contributor.authorOlgiati, Alessandro
dc.date.accessioned2016-02-17T09:13:27Z
dc.date.available2016-02-17T09:13:27Z
dc.date.issued2016-02-02
dc.description.abstractWe study the effective time evolution of a large quantum system consisting of a mixture of different species of identical bosons in interaction. If the system is initially prepared so as to exhibit condensation in each component, we prove that condensation persists at later times and we show quantitatively that the many-body Schrödinger dynamics is effectively described by a system of coupled cubic non-linear Schrödinger equations, one for each component.en_US
dc.identifier.sissaPreprint08/2016/MATE
dc.identifier.urihttps://openscience.sissa.it/handle/1963/35172
dc.language.isoenen_US
dc.miur.area1en_US
dc.subjectEffective evolution equationsen_US
dc.subjectMany-body quantum dynamicsen_US
dc.subjectMixture condensateen_US
dc.subjectPartial traceen_US
dc.subjectReduced density matrixen_US
dc.subjectMean-field scalingen_US
dc.subjectHartree equationen_US
dc.subjectCoupled non-linear Schrödinger equationsen_US
dc.subject.miurMAT/07en_US
dc.titleMean-field quantum dynamics for a mixture of Bose-Einstein condensatesen_US
dc.typePreprinten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sissa_preprint_08-2016-MATE.pdf
Size:
570.13 KB
Format:
Adobe Portable Document Format
Description:
Preprint 08/2016/MATE
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.3 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections