An estimate for the entropy of Hamiltonian flows

dc.contributor.areaMathematicsen_US
dc.contributor.authorChittaro, Francesca C.en_US
dc.contributor.departmentFunctional Analysis and Applicationsen_US
dc.date.accessioned2006-04-18T12:42:32Zen_US
dc.date.accessioned2011-09-07T20:27:40Z
dc.date.available2006-04-18T12:42:32Zen_US
dc.date.available2011-09-07T20:27:40Z
dc.date.issued2006-04-18T12:42:32Zen_US
dc.description.abstractIn the paper we present a generalization to Hamiltonian flows on symplectic manifolds of the estimate proved by Ballmann and Wojtkovski in \cite{BaWoEnGeo} for the dynamical entropy of the geodesic flow on a compact Riemannian manifold of nonpositive sectional curvature. Given such a Riemannian manifold $M,$ Ballmann and Wojtkovski proved that the dynamical entropy $h_{\mu}$ of the geodesic flow on $M$ satisfies the following inequality: $$ h_{\mu} \geq \int_{SM} \traccia \sqrt{-K(v)} d\mu(v), $$ \noindent where $v$ is a unit vector in $T_pM$, if $p$ is a point in $M$, $SM$ is the unit tangent bundle on $M,$ $K(v)$ is defined as $K(v) = \mathcal{R}(\cdot,v)v$, with $\mathcal{R}$ Riemannian curvature of $M$, and $\mu$ is the normalized Liouville measure on $SM$.en_US
dc.format.extent169771 bytesen_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationJ. Dyn. Control Syst. 13 (2007) 55-67en_US
dc.identifier.urihttps://openscience.sissa.it/handle/1963/1815en_US
dc.language.isoen_USen_US
dc.relation.ispartofseriesSISSA;09/2006/Men_US
dc.relation.ispartofseriesarXiv.org;math.DS/0602674en_US
dc.relation.uri10.1007/s10883-006-9003-3en_US
dc.titleAn estimate for the entropy of Hamiltonian flowsen_US
dc.typePreprinten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
math.DS0602674.pdf
Size:
165.79 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.74 KB
Format:
Plain Text
Description:
Collections