Quasi-periodic solutions for quasi-linear generalized KdV equations

dc.contributor.advisor
dc.contributor.areaMathematicsen_US
dc.contributor.authorGiuliani, Filippo
dc.date.accessioned2016-07-12T10:50:32Z
dc.date.available2016-07-12T10:50:32Z
dc.date.issued2016-07
dc.description.abstractWe prove the existence of Cantor families of small amplitude, linearly stable, quasi-periodic solutions of quasi-linear autonomous Hamiltonian generalized KdV equations. We consider the most general quasi-linear quadratic nonlinearity. The proof is based on an iterative Nash-Moser algorithm. To initialize this scheme, we need to perform a bifurcation analysis taking into account the strongly perturbative effects of the nonlinearity near the origin. In particular, we implement a weak version of the Birkhoff normal form method. The inversion of the linearized operators at each step of the iteration is achieved by pseudo-differential techniques, linear Birkhoff normal form algorithms and a linear KAM reducibility scheme.en_US
dc.identifier.sissaPreprint38/2016/MATE
dc.identifier.urihttps://openscience.sissa.it/handle/1963/35204
dc.language.isoenen_US
dc.miur.area1en_US
dc.publisherSISSAen_US
dc.relation.firstpage1en_US
dc.relation.lastpage62en_US
dc.subjectQuasi-linear Partial differential equationsen_US
dc.subjectQuasi-periodic solutionsen_US
dc.subjectNash-Moser theoryen_US
dc.subjectKAM for PDE'sen_US
dc.subject.miurMAT/05en_US
dc.titleQuasi-periodic solutions for quasi-linear generalized KdV equationsen_US
dc.typePreprinten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
QuasiPeriodicSolgKdV.pdf
Size:
653.12 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.3 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections