Solutions to the nonlinear Schroedinger equation carrying momentum along a curve. Part II: proof of the existence result

dc.contributor.areaMathematicsen_US
dc.contributor.authorMahmoudi, Fethien_US
dc.contributor.authorMalchiodi, Andreaen_US
dc.contributor.departmentFunctional Analysis and Applicationsen_US
dc.date.accessioned2007-09-17T08:58:18Zen_US
dc.date.accessioned2011-09-07T20:28:05Z
dc.date.available2007-09-17T08:58:18Zen_US
dc.date.available2011-09-07T20:28:05Z
dc.date.issued2007-09-17T08:58:18Zen_US
dc.description.abstractWe prove existence of a special class of solutions to the (elliptic) Nonlinear Schroedinger Equation $- \epsilon^2 \Delta \psi + V(x) \psi = |\psi|^{p-1} \psi$ on a manifold or in the Euclidean space. Here V represents the potential, p is an exponent greater than 1 and $\epsilon$ a small parameter corresponding to the Planck constant. As $\epsilon$ tends to zero (namely in the semiclassical limit) we prove existence of complex-valued solutions which concentrate along closed curves, and whose phase in highly oscillatory. Physically, these solutions carry quantum-mechanical momentum along the limit curves. In the first part of this work we identified the limit set and constructed approximate solutions, while here we give the complete proof of our main existence result.en_US
dc.format.extent663755 bytesen_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.urihttps://openscience.sissa.it/handle/1963/2111en_US
dc.language.isoen_USen_US
dc.relation.ispartofseriesSISSA;52/2007/Men_US
dc.relation.ispartofseriesarXiv.org;0708.0104en_US
dc.titleSolutions to the nonlinear Schroedinger equation carrying momentum along a curve. Part II: proof of the existence resulten_US
dc.typePreprinten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0708.0104v1.pdf
Size:
648.2 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.74 KB
Format:
Plain Text
Description:

Collections