Singular Liouville Equations on S^2: Sharp Inequalities and Existence Results

dc.contributor.advisor
dc.contributor.areaMathematicsen_US
dc.contributor.authorMancini, Gabriele
dc.date.accessioned2015-08-13T11:00:43Z
dc.date.available2015-08-13T11:00:43Z
dc.date.issued2015-08
dc.description.abstractWe prove a sharp Onofri-type inequality and non-existence of extremals for a Moser-Tudinger functional on S^2 in the presence of potentials having positive order singularities. We also investigate the existence of critical points and give some sufficient conditions under symmetry or nondegeneracy assumptions.en_US
dc.description.sponsorshipPRIN project "Variational and perturbative aspects of nonlinear differential problems".en_US
dc.identifier.arXiv1508.02090
dc.identifier.urihttps://openscience.sissa.it/handle/1963/34489
dc.language.isoenen_US
dc.miur.area1en_US
dc.subjectOnofri’s inequalityen_US
dc.subjectsingularitiesen_US
dc.subjectMoser–Trudingeren_US
dc.subjectSphereen_US
dc.subject.miurMAT/05en_US
dc.titleSingular Liouville Equations on S^2: Sharp Inequalities and Existence Resultsen_US
dc.typePreprinten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
art4.pdf
Size:
344.71 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.3 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections