Singular Liouville Equations on S^2: Sharp Inequalities and Existence Results
dc.contributor.advisor | ||
dc.contributor.area | Mathematics | en_US |
dc.contributor.author | Mancini, Gabriele | |
dc.date.accessioned | 2015-08-13T11:00:43Z | |
dc.date.available | 2015-08-13T11:00:43Z | |
dc.date.issued | 2015-08 | |
dc.description.abstract | We prove a sharp Onofri-type inequality and non-existence of extremals for a Moser-Tudinger functional on S^2 in the presence of potentials having positive order singularities. We also investigate the existence of critical points and give some sufficient conditions under symmetry or nondegeneracy assumptions. | en_US |
dc.description.sponsorship | PRIN project "Variational and perturbative aspects of nonlinear differential problems". | en_US |
dc.identifier.arXiv | 1508.02090 | |
dc.identifier.uri | https://openscience.sissa.it/handle/1963/34489 | |
dc.language.iso | en | en_US |
dc.miur.area | 1 | en_US |
dc.subject | Onofri’s inequality | en_US |
dc.subject | singularities | en_US |
dc.subject | Moser–Trudinger | en_US |
dc.subject | Sphere | en_US |
dc.subject.miur | MAT/05 | en_US |
dc.title | Singular Liouville Equations on S^2: Sharp Inequalities and Existence Results | en_US |
dc.type | Preprint | en_US |