Q-factorial Laurent rings
dc.contributor.area | Mathematics | en_US |
dc.contributor.author | Bruzzo, Ugo | |
dc.contributor.author | Grassi, Antonella | |
dc.contributor.department | Mathematical Physics | en_US |
dc.date.accessioned | 2011-09-22T11:19:38Z | |
dc.date.available | 2011-09-22T11:19:38Z | |
dc.date.issued | 2011-08-20 | |
dc.description | 5 pages | en_US |
dc.description.abstract | Dolgachev proved that, for any field k, the ring naturally associated to a generic Laurent polynomial in d variables, $d \geq 4$, is factorial. We prove a sufficient condition for the ring associated to a very general complex Laurent polynomial in d=3 variables to be Q-factorial. | en_US |
dc.identifier.uri | https://openscience.sissa.it/handle/1963/4183 | |
dc.language.iso | en | en_US |
dc.miur.area | -1 | en_US |
dc.publisher | SISSA | en_US |
dc.relation.ispartofseries | arXiv:1108.4116v1; | |
dc.relation.ispartofseries | SISSA;20/2011/FM | |
dc.title | Q-factorial Laurent rings | en_US |
dc.type | Preprint | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1108.4116v1.pdf
- Size:
- 103.38 KB
- Format:
- Adobe Portable Document Format
- Description:
- File downloaded from arXiv.org
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.62 KB
- Format:
- Item-specific license agreed upon to submission
- Description: