Subdivision Analysis of Topological $Z_{p}$ Lattice Gauge Theory

dc.contributor.areaPhysicsen_US
dc.contributor.authorBirmingham, Danny
dc.contributor.authorRakowski, Mark
dc.contributor.departmentElementary Particle Theoryen_US
dc.date.accessioned2012-08-01T09:08:14Z
dc.date.available2012-08-01T09:08:14Z
dc.date.issued1993-06-25
dc.description13 pages, LaTex, ITFA-93-22en_US
dc.description.abstractWe analyze the subdivision properties of certain lattice gauge theories for the discrete abelian groups $Z_{p}$, in four dimensions. In these particular models we show that the Boltzmann weights are invariant under all $(k,l)$ subdivision moves, when the coupling scale is a $p$th root of unity. For the case of manifolds with boundary, we demonstrate analytically that Alexander type $2$ and $3$ subdivision of a bounding simplex is equivalent to the insertion of an operator which equals a delta function on trivial bounding holonomies. The four dimensional model then gives rise to an effective gauge invariant three dimensional model on its boundary, and we compute the combinatorially invariant value of the partition function for the case of $S^{3}$ and $S^{2}\times S^{1}$.en_US
dc.identifier.urihttps://openscience.sissa.it/handle/1963/6058
dc.language.isoenen_US
dc.miur.area-1en_US
dc.publisherSISSAen_US
dc.relation.ispartofseriesarXiv:hep-th/9306136v1;
dc.relation.ispartofseriesSISSA;91/93/EP
dc.titleSubdivision Analysis of Topological $Z_{p}$ Lattice Gauge Theoryen_US
dc.typePreprinten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
hep-th_9306136v1.pdf
Size:
120.41 KB
Format:
Adobe Portable Document Format
Description:
File downloaded from arXiv.org
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections